www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz einer Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Konvergenz einer Reihe
Konvergenz einer Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz einer Reihe: Quotientenkriterium?
Status: (Frage) beantwortet Status 
Datum: 18:11 Do 23.11.2006
Autor: Oxford

Hi,
ich hab ne Frage zur folgenden Aufgabe:
Es seien a, b [mm] \in [/mm] R mit a,b >0. Zeigen Sie, dass die Reihe [mm] \summe_{n=1}^{\infty} \bruch{(a+1)(2a+1)...(na+1)}{(b+1)(2b+1)...(nb+1)} [/mm] genau dann konvergiert, wenn a<b ist.
So, keine Ahnung wie ich da vor gehn muss. Was sagt mir denn hier das Quotientenkriterium? Hilft das? Aber wie geht das?



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenz einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 10:03 Fr 24.11.2006
Autor: angela.h.b.


> Hi,
>  ich hab ne Frage zur folgenden Aufgabe:
> Es seien a, b [mm]\in[/mm] R mit a,b >0. Zeigen Sie, dass die Reihe
> [mm]\summe_{n=1}^{\infty} \bruch{(a+1)(2a+1)...(na+1)}{(b+1)(2b+1)...(nb+1)}[/mm]
> genau dann konvergiert, wenn a<b ist.

Hallo,

wenn [mm] a\ge [/mm] b, dann ist [mm] \bruch{(a+1)(2a+1)...(na+1)}{(b+1)(2b+1)...(nb+1)} [/mm] keine Nullfolge, also ???

Für a<b bilde den Quotienten (nach dem Quotientenkriterium) und schätze ihn ab.

>Was sagt mir

> denn hier das Quotientenkriterium?

Das Quotientenkriterium sagt Dir, daß, wenn der Quotient kleiner einer Zahl Smit S<1 ist, die Reihe absolut konvergiert, also konvergiert.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]