Konvergenz einer Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:18 Sa 27.12.2008 | Autor: | nerg |
Aufgabe | Es seien [mm] (a_{k}) [/mm] mit k aus N eine Nullfolge und [mm] g_1,g_2,...,g_n [/mm] aus R, n aus N, reelle Zahlen, die [mm] g_1+g_2+...+g_n=0 [/mm] erfüllen.
Hiermit sei über [mm] b_k:=g_{1}*a_{k+1}+g_{2}*a_{k+2}+...+g_{n}*a_{k+n} [/mm] für alle k aus [mm] N_{0}, [/mm] die Folge [mm] (b_{k}), [/mm] k aus [mm] N_{0} [/mm] definiert.
Zeigen Sie, dass die Reihe [mm] \summe b_{k} [/mm] konvergent ist und ihr Wert durch folgenden Ausdruck gegeben ist
[mm] \summe_{k=0}^{\infty} b_{k}=g_{1}*a_{1}+(g_{1}+g_{2})*a_{2}+...+(g_{1}+...+g_{n-1})*a_{n-1} [/mm] |
Die Aufgabe ist sehr verwirrend. Bei der Reihe [mm] \summe_{k=0}^{\infty} b_{k} [/mm] frage ich mich z.B., warum das "letzte" "Glied" [mm] ....+(g_{1}+...+g_{n})*a_{n} [/mm] nicht angegeben wurde. Die Reihe geht ja noch weiter (hätte nicht ein ... am Ende stehen müssen?), aber laut Aufgabenblatt endet sie bei n-1. Ist das ein Fehler oder steckt da ein System hinter?
Die Folge erinnerte mich stark an die Leibnizreihe bzw. Leibniz-Kriterium.
Definiere ich die Folge [mm] (g_{k}) [/mm] folgendermaßen [mm] (g_{n})=-1^{n} [/mm] so ist die Summe von [mm] g_n [/mm] mit "n ist gerade natürliche Zahl" schon mal 0.
Bei der unendlichen Reihe von [mm] b_k [/mm] ist sich abwechselnd, wobei n=k+1:
das erste Produkt [mm] -1*a_1
[/mm]
das zweite Produkt [mm] -1+1*a_2=0
[/mm]
das dritte Produkt [mm] -1+1-1*a_3=-1*a_3
[/mm]
das vierte Produkt [mm] -1+1-1+1*a_3=0 [/mm] usf...
Also wären in der unendl. Summe nur die [mm] a_n [/mm] mit ungeraden n und
[mm] -1*a_1 [/mm] + [mm] -1*a_3+...=-a_1-a_3+...
[/mm]
So wäre das keine Leibnitzreihe, sie wäre im positiven bei anfänglich überwiegend positiven [mm] a_k, [/mm] ansonsten im negativen, könnte aber immerhin noch konvergieren, wenn [mm] a_n [/mm] nur schnell genug klein wird.
Ich glaube nicht, dass ich mit willkürlichem Festlegen von [mm] g_n [/mm] so weiter komme und das Ziel erreiche. Dummerweise gibt es für die Aufgabe auch kaum Punkte.
Ein neuer Versuch:
[mm] (g_1)*a_1
[/mm]
[mm] +(g_1+g_2)*a_2
[/mm]
+...
[mm] +(g_1+g_2+...+g_n)*a_{k+1}=\summe_{k=0}^{\infty} ((\summe_{i=1}^{k+1} g_i)a_{k+1}) [/mm] (ist laut Aufgabenstellung aber) [mm] =\summe_{k=0}^{\infty} b_{k}
[/mm]
Wieso ist das die Summe der Reihe der Folge [mm] b_{k}? [/mm] (Problem 1*)
Ist die Folge [mm] (b_k)
[/mm]
(Problem 2a*) [mm] b_{k}=g_n*a_{k+n} [/mm] mit n fest aus N?
oder soll die "Folge" (eine Reihe sein) sein:
(Problem 2b*) [mm] b_{k}=\summe_{i=1}^{n} g_i*a_{k+i} [/mm] mit n fest aus N?
Was meint ihr?
Ich habe zu dieser Aufgabe keine Tipps irgendwo bisher erhalten, benötige sie aber dringend!
Danke!
|
|
|
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 19:20 Sa 03.01.2009 | Autor: | nerg |
Das ist ja schon mal was. Aber was?
Teleskopsummen sind mir an sich schon bekannt, setzen sie doch aber voraus, das wir z.B. zwei Folgenglieder n mal subtrahieren. Also Subtraktion ist das Stichwort.
Aus der Aufgabenstellung geht für mich nicht hervor, dass ich eine Teleskopreihe schon vor mir habe und eine für die Aufgabe zu bilden, scheint mir nicht angebracht.
Kann jemand bestätigen, dass ich hier irgendwie mit einer Teleskopreihe arbeiten muss?
Ich habe auch noch zwei Fragen in meinem Eingangsbeitrag am unteren Ende (Problem 1* und Problem 2*), die ich zum Verständnis der Aufgabe gerne beantwortet hätte.
Danke sehr!
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:38 Sa 03.01.2009 | Autor: | Merle23 |
Wenn du dir ein [mm] a_k [/mm] nimmst, dann hast du in der Reihe unter anderem stehen:
[mm]... + g_1a_k + ... + g_2a_k + ... \ ... \ ... + g_na_k + ...[/mm], wobei die ganzen Pünktchen für sehr viele andere Summanden stehen.
Wenn du das jetzt etwas umsortierst und [mm] a_k [/mm] ausklammerst, dann hast du [mm]... + a_k(g_1 + ... + g_n) + ...[/mm] und es ist ja per Voraussetzung [mm]g_1 + ... + g_n = 0[/mm], also "fällt" das [mm] a_k [/mm] aus der Reihe raus.
Und das ist das, was ich mit Teleskopsumme meinte. Normalerweise steht in einer Teleskopsumme ja [mm]a_1 - a_2 + a_2 - a_3 + a_3 - ...[/mm]. Das ist aber nur ein Spezialfall von deiner Aufgabe, nämlich mit [mm]g_1 = -1 \mbox{ und } g_2 = +1[/mm].
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:25 Sa 03.01.2009 | Autor: | nerg |
Danke, damit kann ich was anfangen! Ich werde es mir durch den Kopf gehen lassen.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:02 Do 08.01.2009 | Autor: | nerg |
Ja, jetzt sehe ich es auch klar und deutlich vor mir auf Papier. Du hast Recht. Das hat drei Wochen gebraucht, diese Aufgabe zu Verstehen, uns das am letzten Tag vor Abgabe...
|
|
|
|