www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz einer Reihe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Konvergenz einer Reihe
Konvergenz einer Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz einer Reihe: Tipp
Status: (Frage) beantwortet Status 
Datum: 22:00 Sa 04.12.2010
Autor: AB89

Aufgabe
Konvergiert die Reihe [mm] \sum_{n=1}^{\infty} \bruch{3n + 5} {n^2 + 10} [/mm] ?

Hallo erstmal! Das hier ist meine erste Frage hier im Forum und ich hoffe, dass ich soweit alles erstmal richtig gemacht habe.
Hier nun meine Frage:
Ich habe zur Lösung der Aufgabe das Majoranten-, Leibnitz-, Cauchy- und Quotientenkriterium. Weiterhin ist das Verhalten von [mm] \sum_{n=1}^{\infty} \bruch{1}{n} [/mm] (divergenz) und [mm] \sum_{n=1}^{\infty} \bruch{1}{n^2} [/mm] (konvergenz) gegeben.
Meine Idee war nun das ganze auf [mm] \bruch{1}{n} [/mm] abzuschätzen um dann das Minorantenkriterium anwenden zu können, da ich von divergenz ausgehe. Mein Problem ist nun, dass ich ja nicht einfach [mm] \bruch{3n + 5} {n^2 + 10} \ge \bruch{3n} {n^2} [/mm] abschätzen kann, da dies offensichtlich nicht der Fall ist. Habt ihr vielleicht Anregungen, wie man da sonst rangehen könnte?  

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenz einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 22:06 Sa 04.12.2010
Autor: Blech

Hi,

> Mein Problem ist nun, dass ich ja nicht einfach $ [mm] \bruch{3n + 5} {n^2 + 10} \ge \bruch{3n} {n^2} [/mm] $ abschätzen kann, da dies offensichtlich nicht der Fall ist.

Für ausreichend große n stimmt das schon. Und für die Konvergenz sind die ersten m Reihenglieder irrelevant (wobei m irgendeine natürliche Zahl ist)

ciao
Stefan

Bezug
                
Bezug
Konvergenz einer Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:22 Sa 04.12.2010
Autor: AB89

Ah, dankeschön!
Ich hatte schon vermutet, dass es irgendwie gehen müsste, bin mir aber zur Zeit noch häufig sehr unsicher, was mach nun einfach machen darf und was genauer zu begründen ist.
Das hat mich auf jeden Fall schonmal ein Stück weiter gebracht. Ich wünsche noch einen schönen Abend!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]