www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz einer Summenreihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Konvergenz einer Summenreihe
Konvergenz einer Summenreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz einer Summenreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:09 Mo 26.11.2007
Autor: mandy-chantal

Hallo Allerseits,

ich komme leider bei meinen Hausaufgaben nicht weiter. Hab schon gaaaaanz lange rumprobiert. kann mir vielleicht einer von euch schlauen Burschen helfen?

Hier meine Aufgabe:
Aufgabe
[Dateianhang nicht öffentlich]


Ich denke, dsas in der allgemeinen Form für die Summe
[mm] c_{n} - c_{0} mit c_{n}=c [/mm] rauskommt.

Bin für jede Hilfe supidankbar!

Tschüssi MC


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Konvergenz einer Summenreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 09:41 Di 27.11.2007
Autor: Somebody


> Hallo Allerseits,
>  
> ich komme leider bei meinen Hausaufgaben nicht weiter. Hab
> schon gaaaaanz lange rumprobiert. kann mir vielleicht einer
> von euch schlauen Burschen helfen?
>  
> Hier meine Aufgabe:
>  [Dateianhang nicht öffentlich]
>  
> Ich denke, dsas in der allgemeinen Form für die Summe
>   [mm]c_{n} - c_{0} mit c_{n}=c[/mm] rauskommt.

Wie ist [mm] $c_0$ [/mm] überhaupt definiert? Der Summationsindex $n$ läuft ja nur von $1$ bis [mm] $\infty$. [/mm]

Wegen [mm] $a_n=c_n-c_{n-1}$ [/mm] ist

[mm]\sum_{n=1}^N a_n=a_1+a_2+a_3+\cdots +a_{N-1}+a_N=a_1+(\red{c_2}-c_1)+(\red{c_3}-\red{c_2})+\cdots +(\red{c_{N-1}}-\red{c_{N-2}})+(c_N-\red{c_{N-1}})=a_1-c_1+c_N[/mm]

weil die rot markierten [mm] $c_2, c_3, \ldots, c_{N-1}$ [/mm] aus der Summe herausfallen.
Also ist [mm] $\sum_{n=1}a_n=\lim_{N\rightarrow \infty}\sum_{n=1}^N a_n=\lim_{N\rightarrow \infty}(a_1-c_1+c_N)=a_1-c_1+c$. [/mm]

Nachtrag (Revision 1): Wenn also [mm] $a_1=c_1-c_0$ [/mm] ist, dann folgt [mm] $a_1-c_1=-c_0$. [/mm] Damit ergibt die obige Umformungskette den von Dir angegebenen Wert der Reihe: [mm] $\sum_{n=1}^\infty a_n=a_1-c_1+c=-c_0+c$. [/mm] In einem ersten Anlauf litt ich offenbar unter einer schon beinahe irrational anmutenden Hemmung, für die Folge der [mm] $c_n$ [/mm] den Index $n$ auch den Wert $0$ annehmen zu lassen...

Beim ersten Beispiel a) ist etwa [mm] $c_n [/mm] = [mm] -\frac{1}{n+1}$ [/mm] und $c=0$ und daher [mm] $\sum_{n=1}^\infty a_n=\frac{1}{1\cdot 2}-\left(-\frac{1}{1+1}\right)+0 [/mm] = 1$ bzw. [mm] $\sum_{n=1}^\infty a_n=-\left(-\frac{1}{0+1}\right)+0=1$ [/mm]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]