Konvergenz gegen Poisson-Verte < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Es sollen k=k(n) Kugeln auf n Fächer verteilt werden (mit Mehrfachbelegung). Sei außerden [mm] S_n [/mm] die Anzahl der leerren Fächer.
Zeige: Falls [mm] ne^{-k/n}\to\lambda\in(0,\infty) [/mm] für [mm] n\to\infty, [/mm] so konvergiert [mm] S_n [/mm] gegen Y, wobei Y [mm] P_\lambda-verteilt [/mm] ist. |
Hallo allerseits,
ich sitze seit paar Stunden an der Aufgabe und komme nicht weiter. Als zusätzliche Tipps wurde gesagt, dass man von [mm] p_0(k,n-m) [/mm] auf [mm] p_m(k,n) [/mm] schließen kann, wobei [mm] p_m(k,n)=W-keit [/mm] dass genau m Fächer leer bleiben.
Außerdem dürfen wir [mm] \limes_{n\rightarrow\infty}{n\choose m}(1-m/n)^k \ge \lambda^m/m! [/mm] benutzen.
Nun ist die W-keit dass mindestens die Fächer [mm] i_1,.....,i_l [/mm] leer bleiben [mm] (1-m/n)^k. [/mm] Daraus habe ich dann gefolgert, dass P[mind. m+1 Fäcker bleiben leer]= [mm] {n\choose m+1}((n-m-1)/n)^k [/mm] ist.
Folglich ist dann [mm] P[S_n=m]=1-P[mind. [/mm] m+1 Fächer leer] -P[max. m-1 Fächer [mm] leer]={n\choose m}((n-m)/n)^k [/mm] - [mm] {n\choose m+1}((n-m-1)/n)^k. [/mm] Aber die W-keit dass genau n-m Fächer besetzt sind ist gleich der W-keit dass genau m Fächer leer bleiben.
Also [mm] p_m(n,k)=P[S_n=m]. [/mm] Aber hier komme ich nicht weiter, da mir nicht einfallen will, wie man die Konvergenz gegen eine [mm] P_\lambda-verteilte [/mm] ZV zeigen soll.
Es wäre schön wenn mir einer hier weiterhelfen könnte.
Gruß Kopfkirmes
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:20 Do 04.11.2010 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|