Konvergenz in R^n < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Untersuche auf Konvergenz im metrischen Raum [mm] \IR^n:
[/mm]
a) [mm] a_k [/mm] = [mm] \vektor{2 + \bruch{1}{k} \\ \bruch{k^2}{2^k}} \in \IR^2
[/mm]
b) [mm] b_k [/mm] = [mm] \vektor{\bruch{1}{k} \\ \vdots \\ \bruch{n}{k}} \in \IR^n [/mm] |
Guten Tag, ich würde gerne Wissen, ob mein Ansatz so in Ordnung wäre:
a) [mm] a_k [/mm] = [mm] \vektor{2 + \bruch{1}{k} \\ \bruch{k^2}{2^k}} \in \IR^2
[/mm]
Zz: Für alle [mm] \varepsilon [/mm] > 0 existiert ein ein [mm] N_a [/mm] mit [mm] d(a_k, [/mm] a*) < [mm] \varepsilon, \forall [/mm] k [mm] \ge N_a
[/mm]
Die Folge [mm] a_k [/mm] konvergiert genau dann, wenn ihre Komponenten konvergieren:
(1. Komponente): [mm] \limes_{k\rightarrow\infty} [/mm] 2 + [mm] \bruch{1}{k} [/mm] = 2, da der Bruch [mm] \bruch{1}{k} [/mm] offensichtlich gegen 0 strebt und der konstante Summand stehen bleibt.
(2. Komponente): [mm] \limes_{k\rightarrow\infty} \bruch{k^2}{2^k} [/mm] = 0, naja - [mm] 2^k [/mm] wächst halt schneller. Formal könnte man vielleicht 2 mal L’Hospital mit einbringen. Dann würde im Zähler eine 2 stehen und im Nenner ein monoton steigender Ausdruck, der noch von k abhängt [mm] \Rightarrow [/mm] 2. Komponente [mm] \to [/mm] 0.
Damit hätten wir:
Für alle [mm] \varepsilon [/mm] > 0 existiert ein [mm] N_a_1, [/mm] sodass | (2 + [mm] \bruch{1}{k}) [/mm] - 2 | < [mm] \varepsilon, \forall [/mm] k [mm] \ge N_a_1.
[/mm]
Und, für alle [mm] \varepsilon [/mm] > 0 existiert ein [mm] N_a_2, [/mm] sodass | [mm] \bruch{k^2}{2^k} [/mm] - 0 | < [mm] \varepsilon, \forall [/mm] k [mm] \ge N_a_2.
[/mm]
[mm] \Rightarrow \limes_{k\rightarrow\infty} a_k [/mm] = [mm] \vektor{2 \\ 0}
[/mm]
Wähle: [mm] N_a [/mm] = [mm] max\{N_a_1, N_a_2\}
[/mm]
Also: Existiert für alle [mm] \varepsilon [/mm] > 0 ein [mm] N_a, [/mm] sodass | [mm] \vektor{2 + \bruch{1}{k} \\ \bruch{k^2}{2^k}} [/mm] - [mm] \vektor{2 \\ 0} [/mm] | < [mm] \varepsilon, \forall [/mm] k [mm] \ge N_a
[/mm]
b) Für [mm] b_k [/mm] = [mm] \vektor{\bruch{1}{k} \\ \vdots \\ \bruch{n}{k}} \in \IR^n [/mm] würde ich es ähnlich machen. Mit der Außnahme: Da die einzelnen Komponenten selbst eine Folge [mm] (c_n)_{n \in \IN} [/mm] = [mm] \bruch{n}{k} [/mm] darstellen, braucht man nur ein [mm] N_b [/mm] so groß wählen, sodass [mm] \bruch{n}{k} [/mm] < [mm] \varepsilon [/mm] gilt, für alle [mm] \varepsilon [/mm] > 0 und k [mm] \ge N_b. [/mm] Dann sind die Vorgängerkomponenten erst recht < [mm] \varepsilon. [/mm] Und da [mm] \limes_{k\rightarrow\infty} \bruch{n}{k} [/mm] = 0 ist, erhalten wir als Grenzwert [mm] \limes_{k\rightarrow\infty} \vektor{\bruch{1}{k} \\ \vdots \\ \bruch{n}{k}} [/mm] = [mm] \vektor{0 \\ \vdots \\ 0} [/mm] den Nullvektor in [mm] \IR^n.
[/mm]
Ist das Argument in b) nachvollziehbar?
Ich wäre dankbar für jede hilfreiche Meinung!
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:21 Di 23.11.2010 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|