www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz von Folgen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Konvergenz von Folgen
Konvergenz von Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz von Folgen: Grenzwertberechnung
Status: (Frage) beantwortet Status 
Datum: 22:29 Mi 19.04.2006
Autor: statomatic

Aufgabe
Untersuche auf Konvergenz und bestimme ggfalls. den Grenzwert für n gegen unendlich

an=(n+1)!/(n)hoch(n+1)


Ich weiss nicht so ganz, wie ich es anpacken soll.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenz von Folgen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:47 Mi 19.04.2006
Autor: DeusRa

Probier mal hier das Quotientenkriterium anzuwenden, und dann ein bisschen umformen.

Also  [mm] |\bruch{a_{n+1}}{a_n}| [/mm] einsetzen, umformen, ...,
evtl. kommt bei dir sowas raus [mm] |1+\bruch{1}{n+1}* (\bruch{n}{n+1})^{n+1}|. [/mm]
Das könnte auch falsch sein, habe es nur schnell überflogen.
Aber versuchs mal.

Bezug
                
Bezug
Konvergenz von Folgen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:19 Mi 19.04.2006
Autor: statomatic

Das Problem ist die Fakultät.Man muss sie loswerden...z.B. durch eine Zerlegung

Bezug
                        
Bezug
Konvergenz von Folgen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:26 Mi 19.04.2006
Autor: DeusRa

Die Fakultät fällt dann nach dem Quotientenkriterium weg.
Also:
[mm] \bruch{a_{n+1}}{a_n}=\bruch{(n+2)!}{(n+1)^{n+2}}*\bruch{n^n * n}{(n+1)!}, [/mm] da siehst du, dass [mm] \bruch{(n+2)!}{(n+1)!}=\bruch{1*2*3*...*n*(n+1)*(n+2)}{1*2*3*...*n*(n+1)}, [/mm] da kürzt sich also alles weg, und es bleich hierbei im Nenner n+2 übrig.


Bezug
                                
Bezug
Konvergenz von Folgen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:47 Mi 19.04.2006
Autor: statomatic

Soweit bin ich auch gekommen,aber das spannende fängt erst jetzt an....
somit haben wir rausbekommen:
[mm] \bruch{(n+2)*n^{n}*n} {(n+1)^{(n+2)}} [/mm]
und wat nu?

Bezug
                                        
Bezug
Konvergenz von Folgen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:01 Do 20.04.2006
Autor: DeusRa

Fasse mal [mm] n^n [/mm] mit n zusammen, dann kommt [mm] n^{n+1} [/mm] raus,
schau dann mal weiter

Bezug
        
Bezug
Konvergenz von Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:06 Do 20.04.2006
Autor: leduart

Hallo statomatic
Keine Begrüßung, keine Bitte, kein nettes Wort? Wie motivierst du jemand, was für dich zu tun?
Aber trotzdem: Quotientenkriterium ist was für Reihen nicht für Folgen.
hier hast du doch [mm] a_{n}=1/n*2/n*3/n*.....(n-1)/n*n/n [/mm] =1/n*2/n*3/n*.....(n-1)/n  Jeder der Faktoren ist kleiner 1 also an<1/n oder [mm] an<2/n^{2} [/mm] usw.
Bei sowas sieht man sich erst mal ein paar Folgenglieder explizit an, dann merkt man oft, wie es läuft!
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]