www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz von Folgen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Konvergenz von Folgen
Konvergenz von Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz von Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:21 Mi 14.03.2012
Autor: Dorothea

Aufgabe
Unterusche auf Konvergenz und bestimme wenn möglich den Grenzwert:
[mm] an=\wurzel{n^2 + 7*n + 5} [/mm] - n
[mm] n\in [/mm] N

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

ich habe die Vermutung, dass diese Folge nicht konvergiert, bin mir aber nicht sicher, wie ich das zeigen soll,

Habe angefangen mit der dritten binom. formel zu erweitern und umgeformt, sodass ich letzendlich auf
[mm] \bruch{(7 + 5/n)}{(\wurzel{ 1+7/n + 5/n^2} - 1)} [/mm]

komme für n gegen unendlich geht das ja gegen unendlich, aber reicht das? oder muss ichd as formal mit epsilon zeige, wenn ja wie?

vielen dank

        
Bezug
Konvergenz von Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:28 Mi 14.03.2012
Autor: schachuzipus

Hallo Dorothea,


> Unterusche auf Konvergenz und bestimme wenn möglich den
> Grenzwert:
>  [mm]an=\wurzel{n^2 + 7*n + 5}[/mm] - n
>  [mm]n\in[/mm] N
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> ich habe die Vermutung, dass diese Folge nicht konvergiert,
> bin mir aber nicht sicher, wie ich das zeigen soll,
>  
> Habe angefangen mit der dritten binom. formel zu erweitern

Eine hervorragende Idee!

> und umgeformt, sodass ich letzendlich auf
>  [mm]\bruch{(7 + 5/n)}{(\wurzel{ 1+7/n + 5/n^2} - 1)}[/mm]

Na, du hast doch den Ausgangsterm mit [mm]\sqrt{n^2+7n+5}\red{+}n[/mm] erweitert, oder nicht?

Überdenke also das "-" im Nenner ...

Ansonsten hast du richtig umgeformt.


>  
> komme für n gegen unendlich geht das ja gegen unendlich,
> aber reicht das? oder muss ichd as formal mit epsilon
> zeige, wenn ja wie?

Nee, du hast aus dem "+" ein "-" gemacht, das hat dir die Konvergenz verhauen ...

Schaue nochmal scharf hin, dann siehst du, dass die Folge gegen ... konvergiert!

>  
> vielen dank  

Prego!

Gruß

schachuzipus


Bezug
                
Bezug
Konvergenz von Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:39 Mi 14.03.2012
Autor: Dorothea

Aufgabe
untersuche auf konvergenz und bestimme wenn möglich den Grenzwert
an= [mm] (1+\bruch{1}{n+5})^n [/mm]

oh okay cool danke! dann hab ichs auch:)

also ich habs abgeschätzt, sodass die fünf wegfällt. dann konvergiert das gegen e.
muss ich dass dann noch zeigen?

also ich weiß nie in wie weit ich das dann mit /an-a/< epsilon oder so zeigen muss

Bezug
                        
Bezug
Konvergenz von Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:45 Mi 14.03.2012
Autor: fred97


> untersuche auf konvergenz und bestimme wenn möglich den
> Grenzwert
>  an= [mm](1+\bruch{1}{n+5})^n[/mm]
>  oh okay cool danke! dann hab ichs auch:)
>  
> also ich habs abgeschätzt, sodass die fünf wegfällt.
> dann konvergiert das gegen e.
>  muss ich dass dann noch zeigen?

Zeig mal was du gemacht hast

Tipp:

[mm] (1+\bruch{1}{n+5})^n=(1+\bruch{1}{n+5})^{n+5}*(1+\bruch{1}{n+5})^{-5} [/mm]

FRED

>  
> also ich weiß nie in wie weit ich das dann mit /an-a/<
> epsilon oder so zeigen muss


Bezug
                                
Bezug
Konvergenz von Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:49 Mi 14.03.2012
Autor: Dorothea

also ich hab einfach gemacht

[mm](1+\bruch{1}{n+5})^n[/mm] [mm] \le (1+\bruch{1}{n})^n \le [/mm] e


somit hab ich die reihe abgeschätzt, reicht das? kann ich dann sagen, dass an nun auch gegen e konvergiert?  



Bezug
                                        
Bezug
Konvergenz von Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:52 Mi 14.03.2012
Autor: fred97


> also ich hab einfach gemacht
>  
> [mm](1+\bruch{1}{n+5})^n[/mm] [mm]\le (1+\bruch{1}{n})^n \le[/mm] e
>  
>
> somit hab ich die reihe abgeschätzt, reicht das? kann ich
> dann sagen, dass an nun auch gegen e konvergiert?  

Nein. Es ist z.B. [mm] $(-1)^n \le [/mm] 123* [mm] (1+\bruch{1}{n})^n.$ [/mm]

Aber [mm] ((-1)^n) [/mm] ist divergent.

FRED

>
>  


Bezug
                                                
Bezug
Konvergenz von Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:06 Mi 14.03.2012
Autor: Dorothea

hmm okay aber mit deinem tipp kann ich leider nichts anfangen

Bezug
                                                        
Bezug
Konvergenz von Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:14 Mi 14.03.2012
Autor: schachuzipus

Hallo nochmal,


> hmm okay aber mit deinem tipp kann ich leider nichts
> anfangen

Nun, deine Idee, die gegebene Folge abzuschätzen gegen eine Folge, die gegen [mm]e[/mm] konvergiert, ist schon in Ordnung, es genügt aber nicht, sie nur nach unten oder nach oben abzuschätzen.

Du musst sie einquetschen (also nach oben und unten abschätzen) zwischen (gegen) zwei Folgen, die gegen [mm]e[/mm] konvergieren.

Schaue dir dazu mal das "Sandwichlemma" oder auch "Einschließungslemma" an.

Freds Tip mit der Umformung war so gemeint, dass du die beiden Produktfolgen, die du da erhältst, getrennt auf Konvergenz untersuchen sollst. Dann helfen die Grenzwertsätze weiter.

Substituiere mal bei der ersten Folge [mm]m:=n+5[/mm] und bedenke, dass mit [mm]n\to\infty[/mm] dann auch [mm]m\to\infty[/mm] geht.

Was treibt also die erste Folge?

Was macht die zweite für [mm]n\to\infty[/mm]

Und was sagen letztlich die Genzwertsätze dazu?

Gruß

schachuzipus


Bezug
                                                                
Bezug
Konvergenz von Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:30 Mi 14.03.2012
Autor: Dorothea


>  
> Du musst sie einquetschen (also nach oben und unten
> abschätzen) zwischen (gegen) zwei Folgen, die gegen [mm]e[/mm]
> konvergieren.
>  
> Schaue dir dazu mal das "Sandwichlemma" oder auch
> "Einschließungslemma" an.

ja okay aber ich hab dich keine zweite folge die gegen e konvergiert oder? ich brauche ja noch eine folge an [mm] \le [/mm] (1 + [mm] \bruch{1}{n+5})n [/mm]
da fällt mri aber keine ein, man könnte konstant e nehmen aber woher weiß ich das die kleiner gleich meiner folge isrt


> Freds Tip mit der Umformung war so gemeint, dass du die
> beiden Produktfolgen, die du da erhältst, getrennt auf
> Konvergenz untersuchen sollst. Dann helfen die
> Grenzwertsätze weiter.
>  
> Substituiere mal bei der ersten Folge [mm]m:=n+5[/mm] und bedenke,
> dass mit [mm]n\to\infty[/mm] dann auch [mm]m\to\infty[/mm] geht.
>  
> Was treibt also die erste Folge?
>  
> Was macht die zweite für [mm]n\to\infty[/mm]
>  
> Und was sagen letztlich die Genzwertsätze dazu?

okay wenn ich den Tipp verwende hab ich
(1 + [mm] \bruch{1}{m})^m [/mm] * (1 + [mm] \bruch{1}{n+5})^-5 [/mm]
un für n gegen unendlich geht der erste teil gegen e der dahinter gegen 1

hab ich es dann damit gezeigt?



Bezug
                                                                        
Bezug
Konvergenz von Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:37 Mi 14.03.2012
Autor: schachuzipus

Hallo nochmal,


> >  

> > Du musst sie einquetschen (also nach oben und unten
> > abschätzen) zwischen (gegen) zwei Folgen, die gegen [mm]e[/mm]
> > konvergieren.
>  >  
> > Schaue dir dazu mal das "Sandwichlemma" oder auch
> > "Einschließungslemma" an.
>  
> ja okay aber ich hab dich keine zweite folge die gegen e
> konvergiert oder? ich brauche ja noch eine folge an [mm]\le[/mm] (1
> + [mm]\bruch{1}{n+5})n[/mm]
>  da fällt mri aber keine ein, man könnte konstant e
> nehmen aber woher weiß ich das die kleiner gleich meiner
> folge isrt

Tja, das ist ja das Vertrackte an diesen Abschätzungen ...

>  
>
> > Freds Tip mit der Umformung war so gemeint, dass du die
> > beiden Produktfolgen, die du da erhältst, getrennt auf
> > Konvergenz untersuchen sollst. Dann helfen die
> > Grenzwertsätze weiter.
>  >  
> > Substituiere mal bei der ersten Folge [mm]m:=n+5[/mm] und bedenke,
> > dass mit [mm]n\to\infty[/mm] dann auch [mm]m\to\infty[/mm] geht.
>  >  
> > Was treibt also die erste Folge?
>  >  
> > Was macht die zweite für [mm]n\to\infty[/mm]
>  >  
> > Und was sagen letztlich die Genzwertsätze dazu?
>  
> okay wenn ich den Tipp verwende hab ich
> (1 + [mm]\bruch{1}{m})^m[/mm] * (1 + [mm]\bruch{1}{n+5})^-5[/mm]
>  un für n gegen unendlich geht der erste teil gegen e der
> dahinter gegen 1 [ok]
>  
> hab ich es dann damit gezeigt?

Das kannst du dir selbst beanteorten:

Was sagen die GW-Sätze denn?

Du hast zwei Folgen [mm]a_n=\left(\left(1+\frac{1}{n+5}\right)^{n+5}\right)_{n\in\IN}[/mm] und [mm]b_n=\left(\left(1+\frac{1}{n+5}\right)^{-5}\right)_{n\in\IN}[/mm] mit [mm]a_n\longrightarrow e[/mm] und [mm]b_n\longrightarrow 1[/mm] für [mm]n\to\infty[/mm]

Was sagen die GW-Sätze über Konvergenz von [mm](a_n\cdot{}b_n)_{n\in\IN}[/mm] und den Grenzwert davon?

Damit hast du doch den GW deiner Ausgangsfolge ...

Gruß

schachuzipus

>  
>  


Bezug
                                                                                
Bezug
Konvergenz von Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:54 Mi 14.03.2012
Autor: Dorothea

Aufgabe
Untersuche auf Konvergenz
[mm] \sum_{n=1}^{\infinity} \wurzel[n]{2} [/mm] * [mm] (\bruch{e}{n})^n [/mm]

ja das stimmt. die grenzwertsätze sagen ja genau dass dann der grenzwert a*b ist.

So jetzt noch eine letzte Aufgabe

hab versucht das wurzelkriterium anzuwenden und komme dan auf

[mm] \wurzel[n]{\wurzel[n]{2}} *\bruch{e}{n} [/mm]
und dass ist doch für n gegen unendlich kleiner gleich null
bedeutet das dann das die reihe absolut konvergiert?

Bezug
                                                                                        
Bezug
Konvergenz von Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:00 Mi 14.03.2012
Autor: schachuzipus

Hallo nochmal,


> Untersuche auf Konvergenz
>  [mm]\sum_{n=1}^{\infinity} \wurzel[n]{2}[/mm] * [mm](\bruch{e}{n})^n[/mm]
>  ja das stimmt. die grenzwertsätze sagen ja genau dass
> dann der grenzwert a*b ist.
>  
> So jetzt noch eine letzte Aufgabe
>  
> hab versucht das wurzelkriterium anzuwenden und komme dan
> auf
>  
> [mm]\wurzel[n]{\wurzel[n]{2}} *\bruch{e}{n}[/mm] [ok]
>  und dass ist doch
> für n gegen unendlich kleiner gleich null

Es muss für [mm] $n\to\infty$ [/mm] gegen ein $q$ mit $q<1$ konvergieren.

Und das tut es ja (es geht gegen 0)

>  bedeutet das dann das die reihe absolut konvergiert?

Jo!

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]