www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisKonvergenz von Folgen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Konvergenz von Folgen
Konvergenz von Folgen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz von Folgen: Grenzwert ?
Status: (Frage) beantwortet Status 
Datum: 11:02 Mi 07.09.2005
Autor: Phlipper

Habe diese Aufgabe in keinem anderen Forum gestellt.

[mm] a_{0} [/mm] = a,  [mm] a_{1} [/mm] = b und [mm] a_{n} [/mm] = 1/2 [mm] (a_{n-1} [/mm] + [mm] a_{n-2} [/mm] ) für n  [mm] \ge [/mm] 2.

Ich soll nun zeigen, dass die Folge konvergiert und den Grenzwert angeben.
Also wenn ich [mm] a_{n+2} [/mm] aufschreibe.
[mm] a_{n+2} [/mm] = [mm] 1/2(1/2(a_{n} [/mm] + [mm] a_{n-1}) [/mm] + 1/2 [mm] (a_{n-1} [/mm] + [mm] a_{n-2})). [/mm]
Weiß aber nicht wie ich den Grenzwert formal ausrechne.
Ist der Grenzwert a+b+b ??

Würde mich sehr üner Hilfe freuen, danke.

        
Bezug
Konvergenz von Folgen: Ansatz
Status: (Antwort) fertig Status 
Datum: 13:42 Mi 07.09.2005
Autor: djmatey

Hallöchen, die Konvergenz von Folgen zeigst Du meist damit, dass eine Folge konvergent ist, wenn sie beschränkt und monoton ist. Versuche, diese beiden Punkte zu zeigen!
LG djmatey

Bezug
                
Bezug
Konvergenz von Folgen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:16 Mi 07.09.2005
Autor: Stefan

Hallo djmatey!

> dass eine Folge genau dann konvergent ist, wenn sie
> beschränkt und monoton ist.

Hier hast du dich wohl verhaspelt. :-) Es gilt nur die Rückrichtung.

Und zudem ist hier die Folge gar nicht monoton, sondern besteht aus zwei monotonen Teilfolgen...

Liebe Grüße
Stefan


Bezug
        
Bezug
Konvergenz von Folgen: Hinweis
Status: (Antwort) fertig Status 
Datum: 15:37 Mi 07.09.2005
Autor: danielinteractive

Hab grad deine Aufgabe gefunden, allerdings mit etwas mehr Zwischenschritten:

[]http://www2.am.uni-erlangen.de/~klamroth/ueb/infC2/blatt3.pdf

Aufgabe 16!

Denke das hilft weiter.

mfg
Daniel

Bezug
        
Bezug
Konvergenz von Folgen: Intervallschachtelung
Status: (Antwort) fertig Status 
Datum: 01:06 Do 08.09.2005
Autor: leduart

Hallo
Zeichne doch einfach mal auf der reelen Achse a,b an und dann ein paar Folgenglieder, dann siehst du ne Intervallschachtelung und "siehst" den Grenzwert. da du direkt feststellst wie [mm] |a_{n}-a_{n+1}| [/mm] klein wird (Nullfolge), ist die Konvergenz leicht.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]