Konvergenz von Funktionenfolge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:20 Do 16.03.2006 | Autor: | neli |
Aufgabe | Zeigen Sie, dass die Funktionenfolge fn(x) := [mm] \bruch{x^{2}}{(1 + nx^{2} )} [/mm] auf ganz R gleichmäßig
konvergiert. |
Habe zu der Aufgabe schon eine Musterlösung verstehe diese jedoch nicht so ganz
Diese Musterlösung besagt:
Offensichtlich konvergiert (fn) punktweise gegen die Nullfunktion.
Es ist fn(0) = 0 für alle n. Ist x [mm] \not=0, [/mm] so ist fn(x) = [mm] \bruch{1}{(n + \bruch{1}{x^{2}})} \le \bruch{1}{n} \Rightarrow [/mm] gleichm. Konvergenz.
Ich verstehe nicht warum fn deswegen gleichmäßig konvergiert
hoffe das kann mir jemand kurz in einfachverständlichen Worten erklären
Ich habe die Frage in keinem anderen Forum gestellt
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:08 Do 16.03.2006 | Autor: | Tini21 |
Aus der Funtionsgleichung wurde [mm] x^2 [/mm] ausgeklammert (im nenner sowie im zähler), dann kürzt es sich weg. Diese Funktionenfolge ist nun kleiner als 1/n, da ihr nenner größer als n ist. bei 1/n handelt es sich um eine Folge, die gegen Null konvergiert. Diese ist größer als die Funktionenfolge (aus der Aufgabe), somit konvergiert diese auch gegen Null. An der Stelle 0 ist der Funtionswert ebenfalls null, also liegt hier gleichmäßige Konvergenz vor.....
|
|
|
|