www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz von Potenzreihen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Konvergenz von Potenzreihen
Konvergenz von Potenzreihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz von Potenzreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:44 Mi 12.12.2007
Autor: alexalex

Aufgabe
Aufgabe 1: Untersuchen Sie das Konvergenzverhalten der folgenden Potenzreihen.

[mm] c)\summe_{k=0}^{\infty} \vektor{2k \\ k} x^{3k} [/mm]                                      
[mm] d)\summe_{k=0}^{\infty} \bruch{x^{k^{2}}}{k^{2}} [/mm]

a) und b) habe ich bereits gelöst, aber bei c) und d) komm ich leider nicht weiter!

Ich habe bei der c) das Wurzelkriterium anzuwenden versucht, schaffe es aber nicht den Konvergenzradius zu bestimmen.

Bei der d) fällt mir gar nichts ein.

Ich wäre für Tipps zur Vorgehensweise sehr dankbar!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenz von Potenzreihen: Korrektur
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:52 Mi 12.12.2007
Autor: alexalex

Muss bei der d) im Nenner [mm] 2^{k} [/mm] heißen

Bezug
                
Bezug
Konvergenz von Potenzreihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:14 Mi 12.12.2007
Autor: schachuzipus

Hi,

ok, trotzdem Cauchy-Hadamard bei (d)

Berechne [mm] $\lim\limits_{k\to\infty}\sqrt[k^2]{\left|\frac{1}{2^k}\right|}$ [/mm]


Gruß

schachuzipus

Bezug
        
Bezug
Konvergenz von Potenzreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:07 Mi 12.12.2007
Autor: schachuzipus

Hallo alexalex,

bei der (c) würde ich eher das QK ansetzen und benutzen, dass [mm] $\vektor{n\\k}=\frac{n!}{k!\cdot{}(n-k)!}$ [/mm] ist

[mm] $\left|\frac{\vektor{2(k+1)\\k+1}\cdot{}x^{3(k+1)}}{\vektor{2k\\k}\cdot{}x^{3k}}\right|=\left|\frac{\vektor{2k+2\\k+1}\cdot{}x^{3k+3}}{\vektor{2k\\k}\cdot{}x^{3k}}\right|=|x^3|\cdot{}\frac{\frac{(2k+2)!}{(k+1)!\cdot{}(k+1)!}}{\frac{(2k)!}{k!\cdot{}k!}}=....$ [/mm]


Das fasse mal weitestgehend zusammen und kürze, wo es nur geht, dann lasse [mm] $k\to\infty$ [/mm] gehen und überlege, für welche $x$ die Reihe dann gem. dem Quotientenkriterium konvergiert


Bei der (d) würde ich mit dem Kriterium von Cauchy-Hadamard ansetzen.

Berechne [mm] $\lim\limits_{k\to\infty}\sqrt[k^2]{\left|\frac{1}{k^2}\right|}$ [/mm]


LG

schachuzipus

Bezug
                
Bezug
Konvergenz von Potenzreihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:24 Mi 12.12.2007
Autor: alexalex

Danke für die Ansätze, ich leg dann mal los!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]