Konvergenz von Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:59 Di 04.12.2007 | Autor: | mohko |
Aufgabe | Es seien [mm] \{a_{n}\}_{n\in\IN}, \{b_{n}\}_{n\in\IN} \subset \IR [/mm] zwei Zahlenfolgen, sodass [mm] a_{n}\ge0,
[/mm]
[mm] b_{n}\ge0, \exists n_{0} \in \IN \forall [/mm] n [mm] \ge n_{0}: b_{n}>0 [/mm] und
[mm] \limes_{n\rightarrow\infty} \bruch{a_{n}}{b_{n}}=l
[/mm]
wobei l eine reelle positive Zahl ist. Beweisen Sie, die Reihe [mm] \summe_{i=1}^{\infty}a_{n} [/mm] konvergiert genau dann, wenn die Reihe [mm] \summe_{i=1}^{\infty}b_{n} [/mm] konvergent ist. |
Hallio,
ich weiß nicht ganz wie ich da anfangen soll. Wenn ich Sage dass die Reihe von bn konvergent ist gilt doch, dass [mm] \limes_{n\rightarrow\infty}b_{n}=0.
[/mm]
Das habe ich zumindest als eine notwendiges Konvergenzkriterium nachgeschlagen. Widerspricht sich dass nicht mit den gegebenen Voraussetzunge?
Oder mit welchem Ansatz muss ich an diese Aufgabe herantreten?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo mohko,
!!
Sieh mal hier, da wurde diese Frage heute schon einmal gestellt.
Gruß vom
Roadrunner
|
|
|
|