www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz von Reihen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Konvergenz von Reihen
Konvergenz von Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz von Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:34 Di 22.10.2013
Autor: Paul8

Hallo
Ich weiß nicht ob das hier zu "Schulmathematik" gehört oder ob das doch Uni-Stoff ist. Ich bin auf einem Gymnasium und mein Lehrer hat mir gesagt, dass man das erst auf der Uni macht und, dass wir das nicht auf dem Gymnasium lernen werden.
Und zwar geht es um folgende Gleichung, die nach meinen Informationen stimmt.
[mm]k\in\mathbb{N}[/mm] ist eine Konstante
[mm]lim_{n\to\infty}\left(\frac{\sum_{i=1}^{n}i^{k}}{n^{k+1}}\right) = lim_{n\to\infty}\left(\frac{1^{k}+2^{k}+\ldots+(n-1)^{k}+n^{k}}{n^{k+1}}\right)=\frac{1}{k+1}[/mm]
Meine Frage ist warum das so ist. Kon- und Divergenz (bei einfacheren Termen) haben wir besprochen, auch nicht von Reihen, trotzdem möchte es umbedingt verstehen :).
Wenn man nicht beachten würde, dass die Summe im Zähler auch wächst, wäre der Limes ja 0. Trotzdem bin ich noch ein bisschen skeptisch anzunehmen, dass der Limes nicht 0 ist, da die größte Potzens ja im Nenner steht und somit schneller anwächst - wie ich mir das vorstelle..
Wäre echt nett, wenn mir das jmd erklären könnte oder ggf eine spezielleren Fachbegriff dazu sagen könnte, mitdem man Google für weiteres befragen könnte :)
Danke im Vorraus
Ich hoffe ich nerve euch mit meinem Gefrage nicht.

Da ich auf dem Gymnasium bin und nicht auf der Uni wäre es sehr nett, wenn ihr sagt warum ihr etwas macht.

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: []http://www.matheboard.de/thread.php?threadid=529690

        
Bezug
Konvergenz von Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:28 Mi 23.10.2013
Autor: leduart

Hallo
betrachte das Integral  [mm] \integral_{0}^{n}{ x^k dx} [/mm] deine Zählersumme ist idazu eine Obersumme, Mit Schrittweite 1  also größer oder gleich dem Integral  lässt du das letzte Glied weg, ist es die Untersumme die Kleiner ist als das Integral, das Integral kannst du berechnen, durch [mm] n^{k+1} [/mm] dividieren und den GW bilden. den Unterschied zw. Ober und Untersumme  auch.  der geht gegen 0
für k=1 solltest du es direkt ausrechnen künnen, daran siehst du, dass die Summe etwa wie [mm] n^{k+1} [/mm] - Glieder mit kleinerem Exponenten ist. Damit wird das Resultat plausibler.
Gruss leduart

Bezug
        
Bezug
Konvergenz von Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:53 Mi 23.10.2013
Autor: fred97

Wir betrachten die Funktion [mm] f(x):=x^k. [/mm] f ist integrierbar über [0,1]

Wähle wir die äquidistante Zerlgung [mm] x_0=0, x_1=1/n., x_2=2/n, ...,x_n=n/n [/mm] von [0,1], so ist

[mm] \frac{1^{k}+2^{k}+\ldots+(n-1)^{k}+n^{k}}{n^{k+1}}=\summe_{j=0}^{n}\bruch{1}{n}f(x_j)=:S_n. [/mm]

[mm] S_n [/mm] ist eine Riemannsche Zwischensumme für das Integral [mm] \integral_{0}^{1}{f(x) dx}. [/mm]

Damit gilt : [mm] S_n \to \integral_{0}^{1}{f(x) dx} [/mm]  für n [mm] \to \infty. [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]