www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz von e
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Konvergenz von e
Konvergenz von e < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz von e: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:28 Sa 08.12.2007
Autor: Smex

Aufgabe
Zeigen Sie:
(a) [mm] \limes_{n\rightarrow\infty}(1 [/mm] - [mm] \bruch{1}{n})^n [/mm] = [mm] \bruch{1}{e} [/mm]

(b) Für alle k [mm] \in \IN [/mm] ist [mm] \limes_{n\rightarrow\infty} [/mm] (1 + [mm] \bruch{k}{n})^n [/mm] = [mm] e^k [/mm]

Hi,

kann mir vieleicht jemand einen Ansatz liefern, denn ich verstehe nicht wie man die Ausdrücke großartig vereinfachen soll, um dann die konvergenz zu zeigen.


Vielen Dank

Gruß Smex


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Konvergenz von e: (a)
Status: (Antwort) fertig Status 
Datum: 17:45 Sa 08.12.2007
Autor: Sashman

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Moin Smex!

Betrachte doch einfach:

$\lim_{n\to\infty}(a_{n+1})=\lim_n\to\infty}\left(1-\frac{1}{n+1}\right)^{n+1}=\lim_{n\to\infty}\left(\frac{n}{n+1}\right)^{n+1}=\lim_{n\to\infty}\left(\frac{1}{(1+\frac{1}{n})}\right)^{n+1}$

mFg Sashman

Bezug
        
Bezug
Konvergenz von e: Hinweis
Status: (Antwort) fertig Status 
Datum: 10:36 Mo 10.12.2007
Autor: Loddar

Hallo Smex!


Du darfst doch sicher den Grenzwert [mm] $\limes_{n\rightarrow\infty}\left(1+\bruch{1}{n}\right)^n [/mm] \ = \ e$ verwenden?

Dann setze bei Aufgabe b.) mal $m \ := \ [mm] \bruch{n}{k}$ [/mm] und Du erhältst:
[mm] $$\limes_{n\rightarrow\infty}\left(1+\bruch{k}{n}\right)^n [/mm] \ = \ [mm] \limes_{n\rightarrow\infty}\left(1+\bruch{1}{\bruch{n}{k}}\right)^{k*\bruch{n}{k}} [/mm] \ = \ [mm] \limes_{m\rightarrow\infty}\left(1+\bruch{1}{m}\right)^{k*m} [/mm] \ = \ \ [mm] \limes_{m\rightarrow\infty}\left[\left(1+\bruch{1}{m}\right)^{m}\right]^k$$ [/mm]

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]