www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenstochastische AnalysisKonvergenz zeigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "stochastische Analysis" - Konvergenz zeigen
Konvergenz zeigen < stoch. Analysis < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:48 Fr 09.05.2014
Autor: Cyborg

Aufgabe
Sei [mm] \Omega [/mm] = [0,1] ein Grundraum, P das auf [0,1] eingeschränkte Lebesguemaß, d.h. P([a,b])=b-a für alle a [mm] \le [/mm] b [mm] \in \Omega. [/mm] Die Intervalle [mm] I_n [/mm] = [mm] [a_n, b_n] [/mm] seien rekursiv definiert durch:
[mm] a_1=0 [/mm]
[mm] b_n [/mm] = [mm] a_n [/mm] + [mm] \bruch{1}{n} [/mm]
[mm] a_{n+1} [/mm] = [mm] b_n [/mm]

Daraus konstruieren wir die Intervalle [mm] J_n:= I_n [/mm] mod1, womit gemeint ist, dass bei allen Elementen von [mm] I_n [/mm] nur die Nachkommastellen genommen werden und in [mm] J_n [/mm] getan. Also:
[mm] J_n:= [/mm] {x- [mm] \perp x\perp [/mm] |x [mm] \in I_n [/mm] } .

Die Folge von Zufallsvariablen [mm] X_n [/mm] ist definiert als
[mm] X_n [/mm] (w) = [mm] 1_{J_n}(w) [/mm]

(1=Indikatorfunktion)

a) Zeigen Sie, dass diese Folge in Wahrscheinlichkeit gegen 0 konvergiert
b) Zeigen Sie, dass sie nicht fastsicher konvergiert

Ich weiß leider gar nicht wie ich anfangen soll...
Kann mir jemand einen Tipp geben? Vielleicht eine Skizze wie das ganze überhaupt aussieht oder so?



        
Bezug
Konvergenz zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:40 Sa 10.05.2014
Autor: Gonozal_IX

Hiho,

vergiss diese "mod" Geschichte mal, die stellt nur sicher, dass du nicht aus [0,1] herausläufst, sondern sobald du bspw. das Intervall [mm] $\left[1,1+\bruch{1}{n}\right]$ [/mm] stattdessen wieder an den Anfang springst und [mm] $\left[0,\bruch{1}{n}\right]$ [/mm] erhälst.

Anschaulich erhälst du also immer kleinere Intervalle, die von 0 nach 1 durch das Intervall [0,1] laufen.

Nun zum Problem: Du hast also Intervalle der Form [mm] $A_n [/mm] = [mm] \left[a_n,a_n +\bruch{1}{n}\right]$. [/mm]

1.) Was ist nun [mm] P(A_n) [/mm] und wogegen konvergieren folglich die Indikatorfunktionen davon?

2.) Nimm nun ein beliebiges [mm] $x\in [/mm] [0,1]$ und erinnere dich daran, dass die Intervalle immer durch [0,1] laufen (und damit an jedem x mal vorbeilaufen).

Damit gilt für jedes [mm] X_n(x) [/mm] was?

D.h. für [mm] $\limsup_{n\to\infty} X_n(x)$? [/mm] Und für [mm] $\liminf_{n\to\infty} X_n(x)$ [/mm]

Was folgt daraus für [mm] $\lim_{n\to\infty} X_n(x)$? [/mm]

Was kann [mm] X_n [/mm] also nicht sein?

Gruß,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]