www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesKonvergenzberechunung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Sonstiges" - Konvergenzberechunung
Konvergenzberechunung < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzberechunung: Frage
Status: (Frage) beantwortet Status 
Datum: 15:44 So 20.02.2005
Autor: Skydiver

Hallo.

Ich habe ein kleines Problem bei einer Konvergenzberechnung:
zeigen sie die Konvergenz folgender uneigentlicher Integral:

[mm] \int_{1}^{\infty} e^{-x^2}*\cosh x\, [/mm] dx
[mm] \int_{-1}^{1} [/mm] -2 [mm] \cos [/mm] x [mm] \sin x^2 [/mm] / [mm] x^2\, [/mm] dx

Also ich denke, dass ich das durch

[mm] \lim_{x \to \infty}x^a [/mm] * f(x) = A

berechnen muss und je nach dem Wert von a ist das Integral dann konvergent oder divergent; jedoch komme ich dabei auf keine Lösung, da ich beim zweiten für: a > 0 : 0  
                                  a = 0 : -2
                                  a < 0 : [mm] -\infty [/mm]
erhalte, und dadurch nicht auf Konvergenz bzw. Divergenz schließen kann.
Beim ersten schaffe ich es nicht einmal durch entsprechende Umformungen auf ein Ergebnis der Grenzwertbeziehung zu kommen.
Ich hoffe jemand hat einen kleinen Tip für mich.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Konvergenzberechunung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:14 So 20.02.2005
Autor: andreas

hi

also die regel, die du vorschlägst ist mir nicht ganz klar. es wäre nett, wenn du die nochmal etwas genauer erläutern könntest. ansonsten hätte ich folgenden vorschlag: beim ersten integral kannst du den [mm] $\cosh [/mm] x = [mm] \frac{\textrm{e}^x + \textrm{e}^{-x}}{2}$ [/mm] ersetzen, dann erhälst du

[m] \int_1^\infty \textrm{e}^{-x^2} \cosh x \, \textrm{d}x = \int_1^\infty \textrm{e}^{-x^2} \frac{\textrm{e}^x + \textrm{e}^{-x}}{2} \, \textrm{d}x = \int_1^\infty \left( \frac{\textrm{e}^{-x^2 + x}}{2} + \frac{\textrm{e}^{-x^2 - x}}{2} \right) \, \textrm{d}x [/m]

nun kannst du zeigen, dass das integral über jeden summanden konvergiert und daraus folgern, dass das von dir betrachtete integral konvergiert.

z.b. gilt für $x [mm] \geq [/mm] 1$, dass [mm] $-x^2 [/mm] - x [mm] \leq [/mm] -2x$ und [mm] $-x^2 [/mm] + x [mm] \leq [/mm] -x + 1$ (sofern ich mich nicht verrechnet habe), also (wegen der positivität und der monotonie der [mm] $\textrm{e}$-funktion): [/mm]

[m] 0 \leq \int_1^\infty \frac{\textrm{e}^{-x^2 + x} }{2} \, \textrm{d}x \leq \int_1^\infty \textrm{e}^{-x+1} \, \textrm{d}x [/m] und [m] 0 \leq \int_1^\infty \frac{ \textrm{e}^{-x^2 - x}}{2} \, \textrm{d}x \leq \int_1^\infty \textrm{e}^{-x} \, \textrm{d}x [/m].



bei dem zweiten integral würde ich zeigen, dass die funktion in $x=0$ stetig ergänzbar ist, woraus direkt die konvergenz des integrals folgt (tipp: betrachte [m] \lim_{x \to 0} \frac{\sin x^2}{x^2} [/m] - mit de l'hôspital oder taylor-entwicklung).


probiere mal, ob du damit weiterkommst, sonst melde dich einfach nochmal.


grüße
andreas

Bezug
                
Bezug
Konvergenzberechunung: Anwort
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:31 So 20.02.2005
Autor: Skydiver

Das von mir vorgeschlagenen Lösungsverfahren basiert auf dem Wachstumsvergleich mit der Potenzfunktion 1 / [mm] (x-a)^b, [/mm] die am linken Intervallende (a) dasselbe Verhalten aufweist, wie die zu untersuchende Funktion. Von dieser Potenzfunktion weiß man, dass das Integral für b < 1 konvergiert und für b >= 1 divergiert;
ist nun f(x) <= [mm] C/(x-a)^b [/mm] --> dass auch f(x) konvergiert und dass ist dann der Fall wenn [mm] limes_{x \to 0}f(x) [/mm] * [mm] (x-a)^b [/mm] = C ist;
--> exisitert dieser Grenzwert für b < 1 --> Konvergenz
      existiert er für b >= 1 --> Divergenz;

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]