Konvergenzgeschwindigkeit < Nichtlineare Gleich. < Numerik < Hochschule < Mathe < Vorhilfe
|
Hallo.
Ich habe Probleme mit der Fixpunktiteration der Folge [mm]x_{k+1} = \arctan( \wurzel[3]{x_k} + 1)[/mm]. Zu analysieren ist das Konvergenzverhalten gegen [mm]x_\ast \approx 1,14[/mm].
Die Konvergenz zu zeigen, ist mir hoffentlich gelungen:
Sei [mm]g(x) = \arctan( \wurzel[3]{x_k} + 1)[/mm]. Mit [mm]\arctan(1) = \bruch{\pi}{4}[/mm] und [mm] \limes_{x\rightarrow\infty} \arctan(x) = \bruch{\pi}{2}[/mm] sowie der Eigenschaft, daß der arctan monoton wächst, folgt [mm]g: [0, \infty[ \to [\bruch{\pi}{4}, \bruch{\pi}{2}][/mm]. Auf diesem Intervall ist [mm]g'(x) = \bruch{1}{1 + (\wurzel[3]{x} + 1)^2} \cdot \bruch{1}{3} \le \bruch{1}{6}[/mm]. Nach dem Banach'schem Fixpunktsatz folgt für alle Startwerte [mm]x_0 \ge 0[/mm] die Konvergenz gegen [mm]x_\ast[/mm].
Probleme bekomme ich aber mit der Konvergenzgeschwindigkeit. Dazu wäre zu zeigen, daß gilt:
[mm]\| \arctan(\wurzel[3]{x_k} + 1) - x_\ast \| \le C {\| x_k - x_\ast \|}^p[/mm] mit [mm]C \ge 0[/mm] und [mm]p \ge 1[/mm]. Für p = 1 (lineare Konvergenz - und die liegt ja hier wahrscheinlich vor) wird explizit ein C < 1 gefordert.
An dieser Stelle hab ich genau keine Idee . Vielleicht kann mir jemand erklären, was da eigentlich steht und welche Argumente in Frage kommen.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Viele Grüße.
isVerbose?
|
|
|
|
Hallo isVerbose,
> Die Konvergenz zu zeigen, ist mir hoffentlich gelungen:
> Sei [mm]g(x) = \arctan( \wurzel[3]{x_k} + 1)[/mm]. Mit [mm]\arctan(1) = \bruch{\pi}{4}[/mm]
> und [mm]\limes_{x\rightarrow\infty} \arctan(x) = \bruch{\pi}{2}[/mm]
> sowie der Eigenschaft, daß der arctan monoton wächst, folgt
> [mm]g: [0, \infty[ \to [\bruch{\pi}{4}, \bruch{\pi}{2}][/mm]. Auf
> diesem Intervall ist [mm]g'(x) = \bruch{1}{1 + (\wurzel[3]{x} + 1)^2} \cdot \bruch{1}{3} \le \bruch{1}{6}[/mm].
> Nach dem Banach'schem Fixpunktsatz folgt für alle
> Startwerte [mm]x_0 \ge 0[/mm] die Konvergenz gegen [mm]x_\ast[/mm].
> Probleme bekomme ich aber mit der
> Konvergenzgeschwindigkeit. Dazu wäre zu zeigen, daß gilt:
> [mm]\| \arctan(\wurzel[3]{x_k} + 1) - x_\ast \| \le C {\| x_k - x_\ast \|}^p[/mm]
> mit [mm]C \ge 0[/mm] und [mm]p \ge 1[/mm]. Für p = 1 (lineare Konvergenz -
> und die liegt ja hier wahrscheinlich vor) wird explizit ein
> C < 1 gefordert.
Wegen [mm] x_\ast=g(x_\ast) [/mm] bringt die Voraussetzung des Banachschen Fixpunktsatzes lineare Konvergenz mit sich. Lineare Konvergenz definiert man imho auch so:
[mm]|g(x_k)-g(x_\ast)|\le C|x_k-x_\ast |[/mm]
Um höhere Konvergenzordnungen zu zeigen kannst Du für [mm] g(x_k) [/mm] die Taylorentwicklung mit Entwicklungsstelle [mm] x_\ast [/mm] einsetzen. Allerdings hast Du Recht das hier nur lineare Konvergenz vorliegt.
viele Grüße
mathemaduenn
|
|
|
|
|
Hallo mathemaduenn.
> Wegen [mm]x_\ast=g(x_\ast)[/mm] bringt die Voraussetzung des
> Banachschen Fixpunktsatzes lineare Konvergenz mit sich.
Hier liegt also nur lineare Konvergenz vor. Dann müßte sich ja zeigen lassen, daß [mm]|g(x_k)-g(x_\ast)|\le C{|x_k-x_\ast|}^2[/mm] nicht gilt . Wenn man einsetzt, folgt die Behauptung: [mm]|\arctan( \wurzel[3]{x_k} + 1) - \arctan( \wurzel[3]{x_\ast} + 1)| \not\le C{|x_k - x_\ast|}^2[/mm] mit [mm]x_\ast \approx 1,14[/mm] und [mm]C \ge 0[/mm]. Wie beweist man sowas (sauber)?
Viele Grüße.
isVerbose?
|
|
|
|
|
Hallo isVerbose,
Wie gesagt die Taylorentwicklung mit Lagrange'scher Restgliedform für [mm] g(x_k) [/mm] einsetzen hilft hier meistens. Für diesen Fall reicht wohl auch der MWS der Differentialrechnung.
viele Grüße
mathemaduenn
|
|
|
|