www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenzkriterien
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Konvergenzkriterien
Konvergenzkriterien < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzkriterien: Konvergenz von Reihen
Status: (Frage) beantwortet Status 
Datum: 20:38 Di 05.06.2007
Autor: Darthwader

Hallo

ich grüble schon ne ganze Weile an folgender Aufgabe


ich weiss leider nicht welches Kriterium , zum Nachweis der Konvergenz, ich hier anwenden soll...das Quotientenkriterium ergibt 1,
und das heißt ja, dasses mit dem nicht geht

mit dem Wurzelkriterium komme ich auch nicht sonderlich weit...

mit welchem könnte es gehen? ich komme da absolut nich dahinter

wär schön, wenn ihr mir einen kleinen Denkansatz geben könntet

k^(1/2)-(k-1)^(1/2)  


ch habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:www.onlinemathe.de

        
Bezug
Konvergenzkriterien: Antwort
Status: (Antwort) fertig Status 
Datum: 20:53 Di 05.06.2007
Autor: schachuzipus

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo Matthias,

ich würde mal spontan sagen, dass die Reihe $\sum\limits_k\sqrt{k}-\sqrt{k-1}$ divergent ist.

Ich denke, man kann das nach einer kleinen Umformung gegen eine divergente Minorante abschätzen - also mit dem Vergleichs-oder Majorantenkriterium verarzten:

$\sum\limits_k\sqrt{k}-\sqrt{k-1}=\sum\limits_k\frac{k-(k-1)}{\sqrt{k}+\sqrt{k-1}}$ [erweitert mit $\frac{\sqrt{k}+\sqrt{k-1}}{\sqrt{k}+\sqrt{k-1}}$

$=\sum\limits_k\frac{1}{\sqrt{k}+\sqrt{k-1}}>\sum\limits_k\frac{1}{\sqrt{k}+\sqrt{k}}=\frac{1}{2}\sum\limits_k\frac{1}{\sqrt{k}}=\frac{1}{2}\sum\limits_k\frac{1}{k^{\frac{1}{2}}$

Und diese Reihe ist ja divergent (Die Reihen \sum\limits_k\frac{1}{k^s} mit s\le1 sind divergent, mit s>1 konvergent)

Lg

schachuzipus

Bezug
                
Bezug
Konvergenzkriterien: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:05 Di 05.06.2007
Autor: Darthwader

Danke für die sehr schnelle Antwort

hm...die Divergenz stimmt(laut offiz. Lösung)

aber wie du das gemacht hast, da komme ich nicht ganz mit, wieso erweitert mit $ [mm] \frac{\sqrt{k}+\sqrt{k-1}}{\sqrt{k}+\sqrt{k-1}} [/mm] $  ?

das Majoranten/minorantenkriterium versteh ich irgendwie nicht ganz. Habe auch schon im Gelben Rechenbuch versucht mich da rein zu denken, aber so richtig begreife ich nicht, wie und warum man da so vorgehen muss

könntest du mir evtl. einen Leitfaden geben?

Bezug
                        
Bezug
Konvergenzkriterien: Antwort
Status: (Antwort) fertig Status 
Datum: 21:32 Di 05.06.2007
Autor: leduart

Hallo
1.auf das erweitern kommt man, wenn man wirklich immer direkt sieht Aha, Binom! [mm] (a-b)*a+b)=a^2-b^2. [/mm]
2. Wenn eine Summe ab irgendeienem festen n jedes einzelne Glieg größßer ist, als das einer anderen Reihe, dann muss das ergebnis doch auch größer sein!
Das ist das Minorantenkriterium. und ich find das kann man sich gut vorstellen .
du würdest doch sofort sagen 1+1+1+1+..... > 0,9+0,9+0,9+....
umgekehrt, wenn scho ne Summe aus größeren Summanden endlich bleibt, muss die mit den kleineren doch auch.
und letzter Gedanke auf die ersten paar millionen oder Milliarden Summenglieder kommts bei Konvergenz nicht an, weil das immer endlich ist
.
Gruss leduart

Bezug
                                
Bezug
Konvergenzkriterien: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:44 Di 05.06.2007
Autor: Darthwader

alles klar

Danke für die Lösung und die Tipps, werd mal ein paar Übungsaufgaben dazu lösen

MfG

Vielen Dank nochmal für die schnelle Hilfe

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]