www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisKonvergenzkriterien
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Konvergenzkriterien
Konvergenzkriterien < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzkriterien: Frage
Status: (Frage) beantwortet Status 
Datum: 19:20 Mi 01.06.2005
Autor: hexendoc

Hallo Leute,

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich soll verscheidene Reihen auf ihre Konvergenz untersuchen, leider konnte ich die Konvergenzkriterien, gerade das Cauchy-kriterium nicht wirklich nachvollziehen, kann mir vielleicht jemand erklären wie so etwas funktioniert.

Bsp: [mm] \summe_{k=1}^{\infty} x_{n} [/mm] für

xn= [mm] n^2/(2^n-2^{-n}) [/mm]  oder  xn=(n/(n+1))^(n(n-1))




        

        
Bezug
Konvergenzkriterien: antwort
Status: (Antwort) fertig Status 
Datum: 00:04 Do 02.06.2005
Autor: nas181

hi
im ersten fall wendest du dir quatient kreiterum und bekommst du 1/2 raus kleiner als 1 ,d.h konvergiert(weiss nicht ob du auch den wert brauchst)
im zweiten fall:du kannst etwas mit der folge herum spielen und dann bekommst du dass sie gegen [mm] 1/(e^2) [/mm] konvergiert d.h die reihe divergiert.
mathe macht spass oder???
ich hoffe du hast verstanden?!?!?!

Bezug
                
Bezug
Konvergenzkriterien: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:12 Do 02.06.2005
Autor: hexendoc

Danke erstmal für die schnelle antwort,

jetzt weiss ich schonmal das ergebniss, mein problem ist aber vielmehr, dass ich den Lösungsweg der Kriterien nicht so recht verstehe, gerade den des Cauchy-Kriteriums, vielleicht kann mir ja jemand erklären wie genau das anzuwenden ist.

Bezug
                        
Bezug
Konvergenzkriterien: Antwort
Status: (Antwort) fertig Status 
Datum: 10:44 Do 02.06.2005
Autor: Julius

Hallo!

Das Cauchykriterium meint nur, dass es ausreicht zu zeigen, dass die Folge der Partialsummen eine Cauchy-Folge ist.

Es wird allerdings praktik nie angewendet beim Nachweis der Konvergenz spezieller (konkret gegebener) Reihen, weil es sehr unhandlich ist.

Allerdings ist es sehr nützlich bei Beweisen zum Thema "Konvergenz von Reihen"!! Siehe zum Beispiel []hier (15.5.8 + 15.5.9).

Viele Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]