www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenzradius
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Konvergenzradius
Konvergenzradius < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradius: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:34 Mi 14.05.2008
Autor: Charlie1984

Aufgabe
Bestimmen Sie den Konvergenzradius folgender Potenzreihen.

a) [mm] \summe_{k\ge0}^{n}(k^{5}log(k+1)+k^{2})x^{k} [/mm]

b) [mm] \summe_{k\ge0}^{n}3^{\bruch{k}{2}}e^{-k}x^{k} [/mm]

c) [mm] \summe_{k\ge0}^{n}a_{k}(x-a)^{mk} [/mm] mit M [mm] \in \IN, [/mm] wobei die Reihe [mm] \summe_{k\ge0}^{n}a_{k}(x-a)^{mk} [/mm] den Konvergenzradius p=2 habe.

Hallo!

Ich hab mal wieder so einige Verständnisprobleme und habe leider überhaupt nicht verstanden wie den Konvergenzradius berechne.
Könnte mir da jmd eine Hilfestellung geben.

Vielen Dank!

Grüße CHarlie


        
Bezug
Konvergenzradius: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:28 Mi 14.05.2008
Autor: Merle23


> Bestimmen Sie den Konvergenzradius folgender Potenzreihen.
>  
> a) [mm]\summe_{k\ge0}^{n}(k^{5}log(k+1)+k^{2})x^{k}[/mm]
>  
> b) [mm]\summe_{k\ge0}^{n}3^{\bruch{k}{2}}e^{-k}x^{k}[/mm]
>  
> c) [mm]\summe_{k\ge0}^{n}a_{k}(x-a)^{mk}[/mm] mit M [mm]\in \IN,[/mm] wobei
> die Reihe [mm]\summe_{k\ge0}^{n}a_{k}(x-a)^{mk}[/mm] den
> Konvergenzradius p=2 habe.
>  Hallo!
>  
> Ich hab mal wieder so einige Verständnisprobleme und habe
> leider überhaupt nicht verstanden wie den Konvergenzradius
> berechne.
>  Könnte mir da jmd eine Hilfestellung geben.
>  
> Vielen Dank!
>  
> Grüße CHarlie
>  

[]Konvergenzradius


Bezug
        
Bezug
Konvergenzradius: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:28 Mi 14.05.2008
Autor: rainman_do

Hallo, ich muss die Aufgabe auch bearbeiten, hab mich mal an der b) versucht, wäre nett wenn da mal jemand drüber schauen könnte, kann ja sein, dass ich das system falsch verstanden habe.

Also ich hab angefangen mit dem normalen Quotientenkriterium [mm] \vmat{ \bruch{a_{n+1}}{a_n}}, [/mm] also [mm] \bruch{3^{\bruch{k+1}{2}}e^{-k-1}x^{k+1}}{3^{\bruch{k}{2}}e^{-k}x^k} =\bruch{3^{\bruch{k+1}{2}}e^{-k-1}x}{3^{\bruch{k}{2}}e^{-k}} [/mm] = [mm] \bruch{3^{\bruch{k+1}{2}}x}{3^{\bruch{k}{2}}}*\bruch{e^k}{e^{k+1}} [/mm] = [mm] \bruch{3^{\bruch{k+1}{2}}}{3^{\bruch{k}{2}}}*\bruch{x}{e} [/mm] = [mm] \bruch{\wurzel{3^{k+1}}}{\wurzel{3^k}}*\bruch{x}{e} [/mm] = [mm] \wurzel{\bruch{3^{k+1}}{3^k}}*\bruch{x}{e} [/mm] = [mm] \wurzel{3}*\bruch{x}{e} [/mm] = [mm] \bruch{\wurzel{3}x}{e} [/mm] (alles mit Betragsstrichen), wenn nun [mm] \bruch{\wurzel{3}x}{e}<1 [/mm] gilt, ist die Reihe konvergent, also
[mm] |\bruch{\wurzel{3}x}{e}|<1 \gdw \bruch{|\wurzel{3}x|}{|e|}<1 \gdw |\wurzel{3}x|
Vielen Dank schonmal im Voraus.
lg

Bezug
                
Bezug
Konvergenzradius: Antwort
Status: (Antwort) fertig Status 
Datum: 14:12 Mi 14.05.2008
Autor: schachuzipus

Hallo rainman,

> Hallo, ich muss die Aufgabe auch bearbeiten, hab mich mal
> an der b) versucht, wäre nett wenn da mal jemand drüber
> schauen könnte, kann ja sein, dass ich das system falsch
> verstanden habe.
>  
> Also ich hab angefangen mit dem normalen
> Quotientenkriterium [mm]\vmat{ \bruch{a_{n+1}}{a_n}},[/mm] also
> [mm]\bruch{3^{\bruch{k+1}{2}}e^{-k-1}x^{k+1}}{3^{\bruch{k}{2}}e^{-k}x^k} =\bruch{3^{\bruch{k+1}{2}}e^{-k-1}x}{3^{\bruch{k}{2}}e^{-k}}[/mm]
> =
> [mm]\bruch{3^{\bruch{k+1}{2}}x}{3^{\bruch{k}{2}}}*\bruch{e^k}{e^{k+1}}[/mm]
> = [mm]\bruch{3^{\bruch{k+1}{2}}}{3^{\bruch{k}{2}}}*\bruch{x}{e}[/mm]
> = [mm]\bruch{\wurzel{3^{k+1}}}{\wurzel{3^k}}*\bruch{x}{e}[/mm] =
> [mm]\wurzel{\bruch{3^{k+1}}{3^k}}*\bruch{x}{e}[/mm] =
> [mm]\wurzel{3}*\bruch{x}{e}[/mm] = [mm]\bruch{\wurzel{3}x}{e}[/mm] (alles mit
> Betragsstrichen), wenn nun [mm]\bruch{\wurzel{3}x}{e}<1[/mm] gilt,
> ist die Reihe konvergent, also
>  [mm]|\bruch{\wurzel{3}x}{e}|<1 \gdw \bruch{|\wurzel{3}x|}{|e|}<1 \gdw |\wurzel{3}x|
> die Reihe ist also konvergent für alle x kleiner als
> [mm]\bruch{e}{\wurzel{3}},[/mm] dann ist doch [mm]\bruch{e}{\wurzel{3}}[/mm]  [daumenhoch]
> der Konvergenzradius wenn ich das richtig verstanden habe?
>  
> Vielen Dank schonmal im Voraus.
>  lg


Alles bestens, aber verwende vieeel einfacher und um Längen schneller das Kriterium von Cauchy-Hadamard (oder das Wurzelkriterium)

Berechne den Konvergenzradius [mm] $R=\frac{1}{\limsup\limits_{k\to\infty}\sqrt[k]{|a_k|}}=\frac{1}{\limsup\limits_{k\to\infty}\sqrt[k]{3^{\frac{k}{2}}\cdot{}e^{-k}}}$ [/mm]

Gruß

schachuzipus

Bezug
                        
Bezug
Konvergenzradius: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:50 Mi 14.05.2008
Autor: Charlie1984

Oh mann..einfach nur den Kehrwert.....also bei mir im Skript ist das sowas von unverständlich erklärt..danke ..ich werd mich dann mal an die anderen machen....

thx


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]