www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenzradius
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Konvergenzradius
Konvergenzradius < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradius: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:56 Do 22.01.2009
Autor: NightmareVirus

Aufgabe
Es sei [mm] \summe_{n=0}^{\infty} a_n x^n [/mm] eine Potenzreihe mit Konvergenzradius R [mm] \in (0,\infty). [/mm] Bestimmen Sie den Konvergenzradius der folgenden Potenzreihe:
[mm] \summe_{n=0}^{\infty} a_n x^{n^2} [/mm]  

Meine Idee:

Erst einmal schaue ich wie die Summe denn aussieht:

[mm] \summe_{n=0}^{\infty} a_n x^{n^2} [/mm]
= [mm] a_0 [/mm] + a_1x + [mm] 0*x^2 [/mm] + [mm] 0*x^3 [/mm] + [mm] a_2*x^4 [/mm] + [mm] 0*x^5 [/mm] + [mm] 0*x^6 [/mm]

= [mm] \summe_{n=0}^{\infty} b_i x^{n} [/mm] , mit [mm] b_i =\begin{cases} a_{\wurzel{i}} & \mbox{falls } \exists n \in \IN \mbox{ mit } i = n*n \\ 0, & \mbox{sonst}\end{cases} [/mm]

Jetzt versuche ich mit der Wurzelvariante den Konvergenzradius R' zu bestimmen.



[mm] \limes_{i\rightarrow\infty}sup \wurzel[i]{|b_i|} [/mm]

Da [mm] |a_n| \ge [/mm] 0 reicht es die [mm] b_i [/mm] zu betrachten für die gilt i = n*n
also die [mm] b_i [/mm] für die gilt:
[mm] b_i [/mm] = [mm] a_{\wurzel{i}} [/mm] = [mm] a_{\wurzel{n*n}} [/mm]

Also:

[mm] \limes_{i\rightarrow\infty}sup \wurzel[i]{|b_i|} [/mm]
= [mm] \limes_{n\rightarrow\infty}sup \wurzel[n*n]{|a_{n*n}|} [/mm]
= [mm] \limes_{n\rightarrow\infty}sup (|a_{\wurzel{n*n}}|)^{\bruch{1}{n*n}} [/mm]

Für n gegen unendlich geht der exponent gegen 1, [mm] \limes [/mm] sup von [mm] a_{n*n} [/mm] =  [mm] \limes [/mm] sup [mm] a_{n} [/mm]

Also R' = [mm] R^1 [/mm] = R

Beide Reihen haben den gleichen Konvergenzradius.


Funktioniert das so? Hab sonst echt keine Idee wie ich sosnt an die Aufgabe gehen soll.



        
Bezug
Konvergenzradius: Antwort
Status: (Antwort) fertig Status 
Datum: 20:53 Fr 23.01.2009
Autor: Leopold_Gast

Deine Überlegungen können nicht stimmen. Betrachte die Reihe [mm]\sum_{n=0}^{\infty} \frac{1}{2^n} \, x^n[/mm]. Sie hat offenbar den Konvergenzradius [mm]R=2[/mm]. Und auf die Reihe [mm]\sum_{n=0}^{\infty} \frac{1}{2^n} \, x^{n^2}[/mm] wenden wir für [mm]x \neq 0[/mm] direkt das Quotientenkriterium an (die Konvergenz bei [mm]x=0[/mm] ist sowieso klar). Mit [mm]b_n = \frac{x^{n^2}}{2^n}[/mm] folgt:

[mm]\frac{\left| b_{n+1} \right|}{\left| b_n \right|} = \frac{1}{2} \cdot |x|^{2n+1}[/mm]

Ist nun [mm]|x|<1[/mm], so strebt der letzte Ausdruck für  [mm]n \to \infty[/mm] gegen 0. Nach dem Quotientenkriterium konvergiert die Reihe für diesen Fall. Ist dagegen [mm]|x|>1[/mm], so strebt der Ausdruck gegen [mm]\infty[/mm]. Für solche [mm]x[/mm] haben wir also Divergenz. Damit muß [mm]R'=1[/mm] der Konvergenzradius sein.

Überlege einmal, inwiefern sich diese Argumentation verallgemeinern läßt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]