www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenzradius
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Konvergenzradius
Konvergenzradius < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradius: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:26 Mo 06.04.2009
Autor: daisa

Aufgabe
Gegeben ist folgende Funktion:
c(x) := [mm] \integral_{0}^{x}{\bruch{sin(t)}{t} dt}. [/mm]
Berechnen sie die Taylorreihen-Entwicklung von c(x) um [mm] x_{0} [/mm] = 0.

Haaalllooo

Hier kann man ja denn Satz anwenden, der sagt, dass eine gleichmässig konvergente Reihe [mm] \summe_{n=0}^{\infty} f_{n} [/mm] =: f von Regelfunktoinen stelle eine Regelfunktion dar, und darf gliedweise integriert werden.
Bevor man aber diesen Satz benutzt, müsste man ja noch zeigen, dass die Reihe gleichmässig konvergiert, und das macht man, indem man den Konvergenzradius berechnet und dieser soll >0 sein.

Hier habe ich das Problem, dass ich nicht genau weiss, wie ich den Konvergenzradius von sin(t) = [mm] \summe_{k=0}^{\infty} \bruch{(-1)^{k}}{(2k+1)!} t^{2k+1}. [/mm]
Ich würde hier das Wurzelkriterium benutzen, also [mm] \wurzel[2k+1]{a_{k}} [/mm] wobei [mm] a_{k} [/mm] = [mm] \bruch{(-1)^{k}}{(2k+1)!}. [/mm] Aber wie weiter...?! Wird so kompliziert... Ich weiss auch schon, dass der [mm] Konvergenzradius=\infty [/mm] ist.

Kann mir jemand helfen? daaankschööön.

lg daisa

        
Bezug
Konvergenzradius: Antwort
Status: (Antwort) fertig Status 
Datum: 21:48 Mo 06.04.2009
Autor: MathePower

Hallo daisa,

> Gegeben ist folgende Funktion:
>  c(x) := [mm]\integral_{0}^{x}{\bruch{sin(t)}{t} dt}.[/mm]
>  
> Berechnen sie die Taylorreihen-Entwicklung von c(x) um
> [mm]x_{0}[/mm] = 0.
>  Haaalllooo
>  
> Hier kann man ja denn Satz anwenden, der sagt, dass eine
> gleichmässig konvergente Reihe [mm]\summe_{n=0}^{\infty} f_{n}[/mm]
> =: f von Regelfunktoinen stelle eine Regelfunktion dar, und
> darf gliedweise integriert werden.
>  Bevor man aber diesen Satz benutzt, müsste man ja noch
> zeigen, dass die Reihe gleichmässig konvergiert, und das
> macht man, indem man den Konvergenzradius berechnet und
> dieser soll >0 sein.
>  
> Hier habe ich das Problem, dass ich nicht genau weiss, wie
> ich den Konvergenzradius von sin(t) = [mm]\summe_{k=0}^{\infty} \bruch{(-1)^{k}}{(2k+1)!} t^{2k+1}.[/mm]
>  
> Ich würde hier das Wurzelkriterium benutzen, also
> [mm]\wurzel[2k+1]{a_{k}}[/mm] wobei [mm]a_{k}[/mm] =
> [mm]\bruch{(-1)^{k}}{(2k+1)!}.[/mm] Aber wie weiter...?! Wird so
> kompliziert... Ich weiss auch schon, dass der
> [mm]Konvergenzradius=\infty[/mm] ist.


Das Quotientenkriterium ist hier besser hanzuhaben.

[mm]r:=\limes_{k\rightarrow\infty}\vmat{\bruch{a_{k}}{a_{k+1}}}[/mm]


>  
> Kann mir jemand helfen? daaankschööön.
>  
> lg daisa


Gruß
MathePower

Bezug
                
Bezug
Konvergenzradius: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:55 Mo 06.04.2009
Autor: daisa

Hi Mathepower,

Danke für deine Antwort!

Ich versuche es jetzt mal... aber für zum das Wurzelkriterium oder Quotientenkriterium anwenden zu können, muss das t ja [mm] t^{2} [/mm] sein und hier in diesem Fall ist es [mm] t^{2k+1}, [/mm] deshalb hab ich gedacht, dass Wurzelkriterium besser wäre, da man dann die (2k+1)te Wurzel ziehen kann.
Was mach ich denn damit beim Quotientenkriterium?

lg daisa

Bezug
                        
Bezug
Konvergenzradius: Antwort
Status: (Antwort) fertig Status 
Datum: 22:22 Mo 06.04.2009
Autor: MathePower

Hallo daisa,

> Hi Mathepower,
>  
> Danke für deine Antwort!
>  
> Ich versuche es jetzt mal... aber für zum das
> Wurzelkriterium oder Quotientenkriterium anwenden zu
> können, muss das t ja [mm]t^{2}[/mm] sein und hier in diesem Fall
> ist es [mm]t^{2k+1},[/mm] deshalb hab ich gedacht, dass
> Wurzelkriterium besser wäre, da man dann die (2k+1)te
> Wurzel ziehen kann.
> Was mach ich denn damit beim Quotientenkriterium?


Nun, da muß die Reihe etwas anders geschrieben werden:

[mm]\sin\left(t\right)= \summe_{k=0}^{\infty} \bruch{(-1)^{k}}{(2k+1)!} t^{2k+1}= t* \summe_{k=0}^{\infty} \bruch{(-1)^{k}}{(2k+1)!} t^{2k} = t* \summe_{k=0}^{\infty} \bruch{(-1)^{k}}{(2k+1)!} \left( \ t^{2} \ \right)^{k} [/mm]


Jetzt kann der Konvergenzradius der Reihe

[mm]\summe_{k=0}^{\infty} \bruch{(-1)^{k}}{(2k+1)!} \left( \ t^{2} \ \right)^{k} [/mm]


bestimmt werden.


>  
> lg daisa


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]