Konvergenzradius < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 23:09 Fr 03.07.2009 | Autor: | ms2008de |
Hallo,
eine Frage zu Potenzreihe, und zwar: Wenn ich den Konvergenzradius berechnen will kann ich das ja einerseits über das Wurzelkriterium: R= [mm] \bruch{1}{\overline{\limes_{n\rightarrow\infty}}\wurzel[n]{|a_{n}|}} [/mm] und andererseits R [mm] \bruch{1}{\overline{\limes_{n\rightarrow\infty}}|\bruch{a_{n+1}}{a_{n}}|}. [/mm] Jetzt wurde mir aber gesagt, dieses Quotientenkriterium in dem Sinne würd nich immer gelten, wann wäre dieses denn falsch so mit nem konkreten Gegenbeispiel? Theoretisch müsste [mm] a_{n} [/mm] eine Folge sein, die an sich nicht konvergiert, der limes superior dagegen schon. Die alternierende Folge geht aber nicht, weil der Betrag ja 1 würde. Aber es könnte etwas sein, mit exakt 2 Häufungspunkten.
Vielen Dank schon mal im voraus.
Viele Grüße
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:35 Fr 03.07.2009 | Autor: | pelzig |
Das Quotientenkriterium ist, in der richtigen Formulierung (zum Beispiel auf Wikipedia), niemals falsch. Es gibt jedoch einige "Fehlinterpretationen" die besonders beliebt sind, z.B.
Ist [mm] $\limsup_{k\in\IN}\left|\frac{x_{k+1}}{x_k}\right|>1$, [/mm] so divergiert [mm] $\sum_{k=1}^{\infty}x_k$.
[/mm]
Diese Aussage ist falsch, betrachte zum Beispiel die Reihe [mm] $\sum(1/2)^{k+(-1)^k}$. [/mm] Es ist nämlich [mm] $$\frac{|x_{k+1}|}{|x_k|}=\begin{cases}2&\text{falls k ungerade}\\1/8&\text{sonst}\end{cases}$$ [/mm] dennoch konvergiert die Reihe nach dem Wurzelkriterium.
Gruß, Robert
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 00:08 Sa 04.07.2009 | Autor: | ms2008de |
Sorry, aber der Zusammenhang zu meiner ursprünglichen Frage über die Bestimmung des Konvergenzradius einer Potenzreihe mittels des "falschen" Quotientenkriteriums ist mir gerade überhaupt nicht ersichtlich. Bei deinem Beispiel [mm] $\sum(1/2)^{n+(-1)^n}*x^{n}$ [/mm] mit [mm] a_{n}=(1/2)^{n+(-1)^n} [/mm] komme ich über das "falsche" Quotientenkriterium immer noch auf das selbe Ergebnis wie bei Wurzelkriterium, nämlich R= [mm] \bruch{1}{2}
[/mm]
Zu dem was du geschrieben hast, wir haben die Divergenz einer Reihe folgendermaßen übers Quotientenkriterium definiert: Wenn [mm] |\bruch{a_{n+1}}{a_{n}}|>1 \forall [/mm] n [mm] \ge [/mm] N [mm] \Rightarrow \summe_{}^{} a_{n} [/mm] divergiert.
Viele Grüße
|
|
|
|
|
R= $ [mm] \bruch{1}{\overline{\limes_{n\rightarrow\infty}}\wurzel[n]{|a_{n}|}} [/mm] $ und andererseits R $ [mm] \bruch{1}{\overline{\limes_{n\rightarrow\infty}}|\bruch{a_{n+1}}{a_{n}}|}. [/mm] $
> Sorry, aber der Zusammenhang zu meiner ursprünglichen
> Frage über die Bestimmung des Konvergenzradius einer
> Potenzreihe mittels des "falschen" Quotientenkriteriums ist
> mir gerade überhaupt nicht ersichtlich. Bei deinem
> Beispiel [mm]\sum(1/2)^{n+(-1)^n}*x^{n}[/mm] mit
> [mm]a_{n}=(1/2)^{n+(-1)^n}[/mm] komme ich über das "falsche"
> Quotientenkriterium immer noch auf das selbe Ergebnis wie
> bei Wurzelkriterium, nämlich R= [mm]\bruch{1}{2}[/mm]
Hallo,
ja, das stimmt.
Felix hatte ja schon auf die Folgen hingewiesen, be denen immer wieder Nullen vorkommen.
Aber selbst, wenn Du diese stillschweigend ausschließt:
Schau Dir [mm] \summe (2x^{2k}+2x^{2k+1}) [/mm] an.
Cauchy-Hadamard liefert Dir r=1.
Verwendest Du hingegen das falsche Quotientenkriterium mit "Deinem" limes superior, so bekommst Du [mm] r=\bruch{2}{3}.
[/mm]
Verwendest Du das richtige Quotientenkriterium, so stellst Du fest, daß es keinen Grenzwert gibt, Du dieses also nicht verwenden kannst.
Gruß v. Angela
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 07:23 Sa 04.07.2009 | Autor: | felixf |
Hallo!
> eine Frage zu Potenzreihe, und zwar: Wenn ich den
> Konvergenzradius berechnen will kann ich das ja einerseits
> über das Wurzelkriterium: R=
> [mm]\bruch{1}{\overline{\limes_{n\rightarrow\infty}}\wurzel[n]{|a_{n}|}}[/mm]
> und andererseits R
> [mm]\bruch{1}{\overline{\limes_{n\rightarrow\infty}}|\bruch{a_{n+1}}{a_{n}}|}.[/mm]
> Jetzt wurde mir aber gesagt, dieses Quotientenkriterium in
> dem Sinne würd nich immer gelten, wann wäre dieses denn
> falsch so mit nem konkreten Gegenbeispiel?
Nun, es funktioniert nicht, wenn unendlich viele [mm] $a_i$ [/mm] Null sind. Das ist z.B. bei der Potenzreihe [mm] $\sum_{n=0}^\infty x^{2 n}$ [/mm] der Fall; hier ist [mm] $a_{2 n} [/mm] = 1$ und [mm] $a_{2 n + 1} [/mm] = 0$, insbesondere also [mm] $\frac{a_{n+1}}{a_n}$ [/mm] niemals definiert.
LG Felix
|
|
|
|