www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisKonvergenzradius bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - Konvergenzradius bestimmen
Konvergenzradius bestimmen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradius bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:24 Mo 19.01.2009
Autor: MatheSpass

Aufgabe
Bestimmen Sie den Konvergenzradius der Potenzreihe [mm] \summe_{n=0}^{\infty} (z^2 [/mm] + [mm] b^n )z^n [/mm] , wobei b [mm] \in \IC [/mm]

Hallo,
ich kriege diese Aufgabe nicht hin. Ich weiß nicht einmal, wie ich anfangen soll. Wenn ich die Klammer ausmultipliziere, kann ich ja die Summen nicht auseinanderziehen, das ginge ja nur innerhalb des Radius, den ich aber erst bestimmen muss.
Kann mir bitte jemand einen Tipp geben, wie ich da rangehen soll?
Danke schonmal!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

EDIT: Bis eben stand oben noch [mm] b_n [/mm] und nicht [mm] b^n... [/mm]


        
Bezug
Konvergenzradius bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:38 Mo 19.01.2009
Autor: fred97


> Bestimmen Sie den Konvergenzradius der Potenzreihe
> [mm]\summe_{n=0}^{\infty} (z^2[/mm] + [mm]b_n )z^n[/mm] , wobei b [mm]\in \IC[/mm]


Ich nehme an es heißt [mm] b_n \in \IC [/mm]


Die Reihe $ [mm] \summe_{n=0}^{\infty} (z^2 [/mm] $ + $ [mm] b_n )z^n [/mm] $  konvergiert [mm] \gdw [/mm]

Die Reihen  $ [mm] \summe_{n=0}^{\infty}z^{n+2} [/mm] $ und  $ [mm] \summe_{n=0}^{\infty}b_n z^n [/mm] $ konvergieren.

Die Reihe $ [mm] \summe_{n=0}^{\infty}z^{n+2} [/mm] $ ist die geometrische Reihe, konvergiert also für $|z|<1$.

Weiter sei [mm] \rho [/mm] = lim sup [mm] \wurzel[n]{|b_n|} [/mm]

Fall 1: [mm] \rho [/mm] = [mm] \infty. [/mm] Dann konvergiert [mm] \summe_{n=0}^{\infty}b_n z^n [/mm]  nur für z = 0, damit konvergiert $ [mm] \summe_{n=0}^{\infty} (z^2 [/mm] $ + $ [mm] b_n )z^n [/mm] $ ebenfalls nur für z = 0.


Fall 2: [mm] \rho [/mm] = 0. Dann konvergiert [mm] \summe_{n=0}^{\infty}b_n z^n [/mm]  in jedem z, also konvergiert $ [mm] \summe_{n=0}^{\infty} (z^2 [/mm] $ + $ [mm] b_n )z^n [/mm] $ für |z|<1.


Fall 3: 0< [mm] \rho [/mm] < [mm] \infty. [/mm] Dann konvergiert [mm] \summe_{n=0}^{\infty}b_n z^n [/mm]  für |z| < [mm] \bruch{1}{\rho}, [/mm] also konvergiert $ [mm] \summe_{n=0}^{\infty} (z^2 [/mm] $ + $ [mm] b_n )z^n [/mm] $ für


    |z| < min {  1, [mm] \bruch{1}{\rho} [/mm]  }


FRED

>  
> Hallo,
> ich kriege diese Aufgabe nicht hin. Ich weiß nicht einmal,
> wie ich anfangen soll. Wenn ich die Klammer
> ausmultipliziere, kann ich ja die Summen nicht
> auseinanderziehen, das ginge ja nur innerhalb des Radius,
> den ich aber erst bestimmen muss.
> Kann mir bitte jemand einen Tipp geben, wie ich da rangehen
> soll?
>  Danke schonmal!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
                
Bezug
Konvergenzradius bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:42 Mo 19.01.2009
Autor: MatheSpass

Ach Mist, das tut mir leid, es heißt nicht [mm] b_n [/mm] sondern [mm] b^n [/mm]. Das ist mein erster Versuch in Tex... Aber trotzdem vielen Dank, dadurch müsste das ja mit dem Wurzelkriterium machbar sein.
Das hat mir sehr geholfen!
Ich editiere das oben mal zum richtigen hin.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]