Konvergenzverhalten, Wurzel < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 09:49 Sa 27.06.2015 | Autor: | sissile |
Aufgabe | Nach Vorlesung wird das Newtonsche Verfahren zur Berechnung der 3.ten Wurzel von a [mm] \in \IR_{+} \setminus \{0\} [/mm] durch die Iterationsvirschrift [mm] x_{n+1}=\frac{1}{3}(2x_n+\frac{a}{x_n^2}) [/mm] mit beliegem Anfangswert [mm] x_0>0 [/mm] gegeben.
Man zeige, dass auch die durch [mm] x_{n+1}= \frac{1}{2} (x_n [/mm] + [mm] \frac{a}{x_n^2}) [/mm] rekursiv definierte Folge gegen [mm] \sqrt[3]{a} [/mm] konvergiert und vergleiche die Konvergenzgeschwindkeit beider Verfahren. |
Hallo,
Bin bei einer Aufgabe gescheitert:
Falls die rekursiv definierte Folge konvergiert [mm] (\lim_{n\rightarrow\infty} x_n=x) [/mm] ist klar:
[mm] x_{n+1}= \frac{1}{2} (x_n [/mm] + [mm] \frac{a}{x_n^2}) \rightarrow [/mm] x= [mm] \frac{1}{2} (x+\frac{a}{x^2})
[/mm]
Also [mm] \frac{1}{2} [/mm] x= [mm] \frac{a}{2x^2} \iff x=\sqrt[3]{a}
[/mm]
Es bleibt zuZeigen, dass die Folge konvergiert:
Ich habe eine Funktion gefunden, so dass das Newton-Verfahren angewandt auf diese Funktion die zweite Iteration ergibt
[mm] f(x)=(x^3-a)^{\frac{2}{3}} [/mm] her.
So ist [mm] f'(x)=\frac{2 x^2}{\sqrt[3]{x^3-a}}
[/mm]
Newtonverfahren: [mm] x_{n+1}=x_n [/mm] - [mm] \frac{f(x_n)}{f'(x_n)}
[/mm]
[mm] x_{n+1}= x_n [/mm] - [mm] \frac{(\sqrt[3]{x_n^3-a})^2}{\frac{2x_n^2}{\sqrt[3]{x_n^3-a}}}=..=\frac{1}{2} (x_n [/mm] + [mm] \frac{a}{x_n^2})
[/mm]
Die Funktion ist zwar zweimal differenzierbar jedoch gibt es kein eindeutiges Krümmungsverhalten um [mm] \sqrt[3]{a} [/mm] - was ich mittels den Plot bei Wolfram Alpha eingesehen habe - womit das Newton-verfahren nicht anwendbar ist.
Im Internet hab ich noch gefunden, dass man es direkt versuchen soll:
[mm] |x_{n+1} [/mm] - x| = [mm] |\frac{1}{2} (x_n [/mm] + [mm] \frac{a}{x_n^2} [/mm] - 2x)| = [mm] \frac{1}{2}| \frac{x_n^3+a-2 x x_n^2}{x_n^2}|= \frac{1}{2}|\frac{x_n^3+x^3-2xx_n^2}{x_n^2}|=\frac{1}{2}|x_n-x||\frac{(x_n^2-x^2-x_n*x)}{x_n^2}|=\frac{1}{2}|x_n-x||(1-(\frac{x}{x_n})^2-\frac{x}{x_n})|
[/mm]
Aber da bin ich auch nicht weitergekommen.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:20 Mo 29.06.2015 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|