www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergiert die Reihe?
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Konvergiert die Reihe?
Konvergiert die Reihe? < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergiert die Reihe?: Summer (n/2^n) -> unendlich
Status: (Frage) beantwortet Status 
Datum: 14:22 Fr 21.11.2008
Autor: Rheinsi

Hallo!

Genaue Frage weiter unten, die Entstehung hier:

Wir haben in Stochastik ne Aufgabe:
Ein König will die Zahl der Jungen im Land erhöhen und befiehlt den Frauen, erst dann aufzuhören, wenn sie das erste Mädchen geboren haben.

Nun hab ich mir [mm] \Omega [/mm] = [mm] \IN \backslash [/mm] 0 gewählt. p(x) = [mm] (\bruch{1}{2} )^x [/mm] als Wahrscheinlichkeit. Gedacht als das x. Kind ist das erste Mädchen!
Nun ist die Verteilung der Anzahl der Jungen P (X = w) = p(w+1). Soweit noch klar. Nun  sollen wir in Teil b) den Erwartungswert der Mädchen und Jungen pro Familie berechnen. E(Mädchen) = 1 klar
E(X) [mm] \hat= [/mm] Erwartete Jungen = [mm] \summe_{i=0}^{\infty} \bruch{n}{2^(n+1)} [/mm]  
= [mm] \bruch{1}{2} [/mm] * [mm] \summe_{i=0}^{\infty} \bruch{n}{2^n} [/mm]
Irgendwie bin ich jetzt zu blöd die Summe abzuschätzen.

Klar ist [mm] \summe_{i=0}^{\infty} \bruch{1}{2^n} [/mm] konvergiert gegen 1.
Ich hoffe mal, dass [mm] \summe_{i=0}^{\infty} \bruch{n}{2^n} [/mm] nicht divergiert.

Irgendwelche Vorschläge?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergiert die Reihe?: Antwort
Status: (Antwort) fertig Status 
Datum: 14:29 Fr 21.11.2008
Autor: fred97


> Hallo!
>  
> Genaue Frage weiter unten, die Entstehung hier:
>  
> Wir haben in Stochastik ne Aufgabe:
>  Ein König will die Zahl der Jungen im Land erhöhen und
> befiehlt den Frauen, erst dann aufzuhören, wenn sie das
> erste Mädchen geboren haben.
>
> Nun hab ich mir [mm]\Omega[/mm] = [mm]\IN \backslash[/mm] 0 gewählt. p(x) =
> [mm](\bruch{1}{2} )^x[/mm] als Wahrscheinlichkeit. Gedacht als das
> x. Kind ist das erste Mädchen!
>  Nun ist die Verteilung der Anzahl der Jungen P (X = w) =
> p(w+1). Soweit noch klar. Nun  sollen wir in Teil b) den
> Erwartungswert der Mädchen und Jungen pro Familie
> berechnen. E(Mädchen) = 1 klar
>  E(X) [mm]\hat=[/mm] Erwartete Jungen = [mm]\summe_{i=0}^{\infty} \bruch{n}{2^(n+1)}[/mm]
>  
> = [mm]\bruch{1}{2}[/mm] * [mm]\summe_{i=0}^{\infty} \bruch{n}{2^n}[/mm]
>  
> Irgendwie bin ich jetzt zu blöd die Summe abzuschätzen.
>
> Klar ist [mm]\summe_{i=0}^{\infty} \bruch{1}{2^n}[/mm] konvergiert
> gegen 1.
>  Ich hoffe mal, dass [mm]\summe_{i=0}^{\infty} \bruch{n}{2^n}[/mm]
> nicht divergiert.


Die Reihe

[mm]\summe_{n=0}^{\infty} \bruch{n}{2^n}[/mm]

ist konvergent. Das sieht man mit dem Wurzelkriterium.

>  
> Irgendwelche Vorschläge?



Wenn Du noch den Reihenwert bestimmen willst, so berchne mal mit dem Cauchyprodukt das folgende Produkt:

([mm]\summe_{n=0}^{\infty} \bruch{1}{2^n}[/mm])([mm]\summe_{n=0}^{\infty} \bruch{1}{2^n}[/mm] )

FRED



>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Konvergiert die Reihe?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:24 Fr 21.11.2008
Autor: Rheinsi

[mm] \summe_{i=0}^{\infty} \bruch{1}{2^n} [/mm] * [mm] \summe_{i=0}^{\infty} \bruch{1}{2^n} [/mm] = [mm] \summe_{i=0}^{\infty} c_{n} [/mm] mit [mm] c_{n} [/mm] = [mm] \bruch{n}{2^{n-1}} [/mm] =  2* [mm] \summe_{i=0}^{\infty} \bruch{n}{2^n} [/mm]

=> 1 =  2* [mm] \summe_{i=0}^{\infty} \bruch{n}{2^n} \gdw \summe_{i=0}^{\infty} \bruch{n}{2^n} [/mm] = [mm] \bruch{1}{2} [/mm]

=> Die erwartete Jungenanzahl ist [mm] \bruch{1}{2} [/mm] * [mm] \bruch{1}{2} [/mm] = [mm] \bruch{1}{4} [/mm] ?

Ich meine ich hätte erwartet, dass es kleiner 1 ist, aber so klein?

Aber so meintest du doch, oder?



Edit: Fehler gefunden, ich versuchs neu!



NEUER ANSATZ:

[mm] \summe_{i=0}^{\infty} \bruch{1}{2^n} [/mm] * [mm] \summe_{i=0}^{\infty} \bruch{1}{2^n} [/mm] = [mm] \summe_{i=0}^{\infty} c_{n} [/mm] mit [mm] c_{n} [/mm] = [mm] \bruch{n+1}{2^{n}} [/mm] =  [mm] \bruch{1}{2}* \summe_{i=0}^{\infty} \bruch{n+1}{2^{n+1}} [/mm]

=> 1 =   [mm] \bruch{1}{2} \summe_{i=0}^{\infty} \bruch{n+1}{2^{n+1}} \gdw \summe_{i=1}^{\infty} \bruch{n}{2^n} [/mm] = 2

=> Die erwartete Jungenanzahl ist [mm] \bruch{1}{2} [/mm] * 2 = 1 ?


Das könnte dann ja jetzt wohl stimmen.

Bezug
                        
Bezug
Konvergiert die Reihe?: Antwort
Status: (Antwort) fertig Status 
Datum: 22:00 Fr 21.11.2008
Autor: MathePower

Hallo Rheinsi,

> [mm]\summe_{i=0}^{\infty} \bruch{1}{2^n}[/mm] *
> [mm]\summe_{i=0}^{\infty} \bruch{1}{2^n}[/mm] =
> [mm]\summe_{i=0}^{\infty} c_{n}[/mm] mit [mm]c_{n}[/mm] = [mm]\bruch{n}{2^{n-1}}[/mm]
> =  2* [mm]\summe_{i=0}^{\infty} \bruch{n}{2^n}[/mm]
>  
> => 1 =  2* [mm]\summe_{i=0}^{\infty} \bruch{n}{2^n} \gdw \summe_{i=0}^{\infty} \bruch{n}{2^n}[/mm]
> = [mm]\bruch{1}{2}[/mm]
>  
> => Die erwartete Jungenanzahl ist [mm]\bruch{1}{2}[/mm] *
> [mm]\bruch{1}{2}[/mm] = [mm]\bruch{1}{4}[/mm] ?
>  
> Ich meine ich hätte erwartet, dass es kleiner 1 ist, aber
> so klein?
>  
> Aber so meintest du doch, oder?
>  
>
> Edit: Fehler gefunden, ich versuchs neu!
>  
>
>
> NEUER ANSATZ:
>  
> [mm]\summe_{i=0}^{\infty} \bruch{1}{2^n}[/mm] *
> [mm]\summe_{i=0}^{\infty} \bruch{1}{2^n}[/mm] =
> [mm]\summe_{i=0}^{\infty} c_{n}[/mm] mit [mm]c_{n}[/mm] = [mm]\bruch{n+1}{2^{n}}[/mm]
> =  [mm]\bruch{1}{2}* \summe_{i=0}^{\infty} \bruch{n+1}{2^{n+1}}[/mm]
>  
> => 1 =   [mm]\bruch{1}{2} \summe_{i=0}^{\infty} \bruch{n+1}{2^{n+1}} \gdw \summe_{i=1}^{\infty} \bruch{n}{2^n}[/mm]
> = 2
>  
> => Die erwartete Jungenanzahl ist [mm]\bruch{1}{2}[/mm] * 2 = 1 ?
>  
>
> Das könnte dann ja jetzt wohl stimmen.


Das stimmt auch. [ok]

Es ist

[mm]\summe_{k=0}^{\infty}{\bruch{1}{2^{k}}}=2[/mm]

Demzufolge ist

[mm]\summe_{k=0}^{\infty}{\bruch{1}{2^{k}}}*\summe_{l=0}^{\infty}{\bruch{1}{2^{l}}}=4=\summe_{n=0}^{\infty}{\bruch{n+1}{2^{n}}}[/mm]

Daraus ergibt sich:

[mm]\summe_{n=0}^{\infty}{\bruch{n}{2^{n}}}=2[/mm]

Gruß
MathePower


Bezug
                                
Bezug
Konvergiert die Reihe?: Ich Depp!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:01 Sa 22.11.2008
Autor: Rheinsi

Jo, hab da wohl mal glatt k=0 vergessen!

Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]