www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraKonvexität
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Konvexität
Konvexität < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvexität: Extremalpunkt Beweis
Status: (Frage) beantwortet Status 
Datum: 15:17 Do 14.02.2008
Autor: dabra

Aufgabe
Sei K [mm] \subseteq \IR^n [/mm] konvex.
Beweise:
x [mm] \in [/mm] K ist Extremalpunkt: [mm] \gdw [/mm] K - {x} konvex ist.

Hat jemand ne Ahnung wie man das beweist?
Studiere nicht Mathematik und rätsele da jetzt schon ne Stunde dran rum.

Sind a,b [mm] \in [/mm] K - {x}, dann ist ja auch die Strecke ab in K. Da x ja ein Extremalpunkt ist und a,b beide aus K - {x} sind, kann x weder =a noch =b sein.
Nun komme ich leider nicht weiter.

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: http://matheplanet.com/matheplanet/nuke/html/viewtopic.php?topic=97970

        
Bezug
Konvexität: Antwort
Status: (Antwort) fertig Status 
Datum: 08:34 Fr 15.02.2008
Autor: angela.h.b.


> Sei K [mm]\subseteq \IR^n[/mm] konvex.
>  Beweise:
>  x [mm]\in[/mm] K ist Extremalpunkt: [mm]\gdw[/mm] K - {x} konvex ist.
>  Hat jemand ne Ahnung wie man das beweist?
>  Studiere nicht Mathematik und rätsele da jetzt schon ne
> Stunde dran rum.
>  
> Sind a,b [mm]\in[/mm] K - {x}, dann ist ja auch die Strecke ab in K.

Hallo,

[willkommenmr].

Das, was Du da schreibst leuchtet mir nicht ein.
Du willst doch erst herausfinden, daß die Strecke komplett in K liegt. Scheitern könnte es daran, daß x ein Streckenpunkt ist.

Ich denke, daß es sinnvoll ist, wenn Du erstmal aufschreibst, wie Extremalpunkt v. K definiert ist.
Und wie habt Ihr aufgeschrieben, was konvex bedeutet?

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]