www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesKonvexität einer Menge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Sonstiges" - Konvexität einer Menge
Konvexität einer Menge < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvexität einer Menge: Idee
Status: (Frage) beantwortet Status 
Datum: 15:00 Mi 25.11.2015
Autor: mathstu

Aufgabe
Sei M := {x [mm] \in \IR^{n} [/mm] : [mm] x_{n} \ge \wurzel{1+ (x_{1})^{2} + ... + (x_{n-1})^{2}} [/mm] }
Zeige, dass M konvex ist.

Hallo,

Ich hab vor ein paar Tagen schon eine Aufgabe zur Konvexität gestellt und dachte ich könnte diese Aufgabe ganz alleine lösen, aber ich komme bei dem Beweis nicht weiter.

Seien x,y [mm] \in [/mm] M, d.h. [mm] x_{n} \ge \wurzel{1+...+ (x_{n-1})^{2}} [/mm] und [mm] y_{n} \ge \wurzel{1+...+ (y_{n-1})^{2}} [/mm] . Für ein beliebiges [mm] \lambda \in [/mm] [0,1] muss also gelten:
[mm] \lambda x_{n} [/mm] + (1- [mm] \lambda [/mm] ) [mm] y_{n} \ge \parallel [/mm] 1, ..., [mm] \lambda x_{n-1} [/mm] + (1- [mm] \lambda [/mm] ) [mm] y_{n-1} \parallel [/mm] weil bei M handelt es sich ja genau um die euklidische Norm.
Ich habe dann angefangen zu versuchen die Norm irgendwie umzuwandeln, dass man auf [mm] \ge x_{n} [/mm] und [mm] \ge y_{n} [/mm] einsetzen kann, aber es klappt nicht. Ich kriege nur einen riesen Bruch wo ich nichts rauskürzen kann.

Ich würde mich über einen kleinen Lösungsvorschlag, der mir sagt wie ich das angehen kann, freuen.

Viele Grüße, mathstu


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvexität einer Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 15:33 Mi 25.11.2015
Autor: fred97

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

> Sei M := {x [mm]\in \IR^{n}[/mm] : [mm]x_{n} \ge \wurzel{1+ (x_{1})^{2} + ... + (x_{n-1})^{2}}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


> }
>  Zeige, dass M konvex ist.
>  Hallo,
>  
> Ich hab vor ein paar Tagen schon eine Aufgabe zur
> Konvexität gestellt und dachte ich könnte diese Aufgabe
> ganz alleine lösen, aber ich komme bei dem Beweis nicht
> weiter.
>  
> Seien x,y [mm]\in[/mm] M, d.h. [mm]x_{n} \ge \wurzel{1+...+ (x_{n-1})^{2}}[/mm]
> und [mm]y_{n} \ge \wurzel{1+...+ (y_{n-1})^{2}}[/mm] . Für ein
> beliebiges [mm]\lambda \in[/mm] [0,1] muss also gelten:
>  [mm]\lambda x_{n}[/mm] + (1- [mm]\lambda[/mm] ) [mm]y_{n} \ge \parallel[/mm] 1, ...,
> [mm]\lambda x_{n-1}[/mm] + (1- [mm]\lambda[/mm] ) [mm]y_{n-1} \parallel[/mm] weil bei
> M handelt es sich ja genau um die euklidische Norm.
>  Ich habe dann angefangen zu versuchen die Norm irgendwie
> umzuwandeln, dass man auf [mm]\ge x_{n}[/mm] und [mm]\ge y_{n}[/mm] einsetzen
> kann, aber es klappt nicht. Ich kriege nur einen riesen
> Bruch wo ich nichts rauskürzen kann.
>  
> Ich würde mich über einen kleinen Lösungsvorschlag, der
> mir sagt wie ich das angehen kann, freuen.
>  
> Viele Grüße, mathstu
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Für [mm] x=(x_1,...,x_n) \in \IR^n [/mm] setze [mm] \overline{x}:=(x_1,...,x_{n-1},1). [/mm]

dann haben wir:

    $x [mm] \in [/mm] M [mm] \gdw ||\overline{x}|| \le x_n.$ [/mm]

Nun seien $x,y [mm] \in [/mm] M$ und $t [mm] \in [/mm] [0,1]$  ( ich schreibe t statt [mm] \lambda, [/mm] bin faul).

Sei z:=tx+(1-t)y. Zu zeigen ist: $z [mm] \in [/mm] M$.

Mach Dir klar, dass [mm] $\overline{z}=t*\overline{x}+(1-t)*\overline{y}$ [/mm] ist.

Es folgt:

  [mm] $||\overline{z}|| \le t*||\overline{x}||+(1-t)*||\overline{y}||$ [/mm]

(Dreiecksungleichung !)

Nun musst Du nur noch verwenden, dass $x,y [mm] \in [/mm] M$ sind, um zu erhalten:

    [mm] ||\overline{z}|| \le z_n.$ [/mm]

FRED



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]