www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenKoordinaten vertauschen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - Koordinaten vertauschen
Koordinaten vertauschen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koordinaten vertauschen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:12 Di 07.12.2010
Autor: emulb

Aufgabe
Gegeben sei ein Punkt P mit dem Ortsvektor [mm] \vec [/mm] r = [mm] \pmat{ x & y & z} \in\IR^3. [/mm]

a) Geben Sie die Matrix M an, die die Koordinaten y und z von [mm] \vec [/mm] r vertauscht.
   Tipp: Gehen Sie dabei wie in der Vorlesung vor, d.h. setzen Sie die Koordinaten x,y,z paarweise
   gleich Null.

b) Geben Sie die Matrix D an, die den Punkt um [mm] \bruch{\pi}{2} [/mm] im mathematisch positiven Sinn um die
   x-Achse dreht.
   Hinweis: Die Drehmatrix für die x-Achsenrotation lässt sich analog zu der Drehmatrix für die z-Achse aus der Vorlesung bestimmen.

c) Geben Sie die Matrix S an, die den Punkt an der xz-Ebene spiegelt.

d) Zeigen Sie, dass sich der Punkt nach Anwendung dieser drei Operationen wieder an seinem ursprünglichen Ort befindet, indem Sie die Matrizen in der richtigen Reihenfolge multiplizieren.
   Hinweis: Beachten Sie, dass die Operation, die zuerst auf den Punkt wirkt, ganz rechts stehen muss usw.

e) Zeigen Sie, dass der Punkt NICHT am ursprünglichen Ort ankommt, wenn man die Operationen in der umgekehrten Reihenfolge ausführt.


a) mit dem paarweise Null setzen habe ich bei c) verwendet...dabei geht es ja auch um die spiegelung.
ich verstehe nun nicht wie ich es paarweise null setzten soll.

b) da habe ich jedesmal statt [mm] \alpha \bruch{\pi}{2} [/mm] eingesetzt.

c) siehe a)

d) und e) wie sollte die Reihenfolge dargestellt werden? wie gehe ich da vor?

        
Bezug
Koordinaten vertauschen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:47 Di 07.12.2010
Autor: chrisno

Was ist denn mit paarweise null setzen gemeint. Schreib mal hin, we Du c) bearbeitet hast. Dann gibts vieleicht eine Idee, wie a) zu lösen ist.
Zu b): schreib mal hin. Drehst Du richtig herum? Drehst Du um die x-Achse?
zu d) und e): Du nimmst den allgemeinen Vektor. Zuerst wirfst Du den der aus a zum Fraß vor. Die gibt einen Vektor raus. Diesen bekommt die Matrix aus b) zu schlucken. Dann ist noch die Matrix aus c) dran.
Anschließend ist eben zuerst die Matrix aus c) dran, danach kommen die aus b) und a).
Das Ganze kürzt Du ab, indem Du direkt die Matritzen miteinander multiplizierst: CBA und ABC.


Bezug
                
Bezug
Koordinaten vertauschen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:43 Di 07.12.2010
Autor: emulb

also:
meine c)

[mm] \vecr [/mm] = [mm] \vektor{x \\ y \\ z} [/mm] -> [mm] \vecr [/mm] ' = [mm] \vektor{x' \\ y' \\ z'} [/mm] = [mm] \vektor{x \\ -y \\ z} [/mm] = S [mm] \vecr [/mm]

S [mm] \vecr [/mm] = [mm] \pmat{ a11 & a12 & a13 \\ a21 & a22 & a23 \\ a31 & a32 & a33 } \vektor{x\\y\\z} [/mm] = [mm] \pmat{ a11x+a12y+a13z \\ a21x+a22y+a23z \\ a31x+a32y+a33z } [/mm] = [mm] \vektor{x \\ -y \\ z} [/mm]

für y=z=0 -> [mm] \vektor{a11x \\ a21x \\ a31x} [/mm] = [mm] \vektor{1 \\ 0 \\ 0} [/mm]
          -> a11=1, a21=0, a31=0

für x=z=0 -> [mm] \vektor{a12y \\ a22y \\ a32y} [/mm] = [mm] \vektor{0 \\ -1 \\ 0} [/mm]
          -> a12=0, a22=-1, a32=0

für x=y=0 -> [mm] \vektor{a13z \\ a23z \\ a33z} [/mm] = [mm] \vektor{0 \\ 0 \\ 1} [/mm]
          -> a13=0, a23=0, a33=1

S =  [mm] \pmat{ 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 } [/mm]

meine b)
[mm] \vektor{y \\ z} [/mm] = [mm] \vektor{ \phi cos \bruch{\pi}{2} \\ \phi sin \bruch{\pi}{2}} [/mm] -> [mm] \vektor{y' \\z'} [/mm] = [mm] \vektor{ \phi cos (\bruch{\pi}{2}+\varphi) \\ \phi sin (\bruch{\pi}{2}+\varphi)} [/mm]

cos [mm] (\bruch{\pi}{2}+\varphi) [/mm] = cos [mm] \bruch{\pi}{2} [/mm] cos [mm] \varphi [/mm] - sin [mm] (\bruch{\pi}{2}) [/mm] sin [mm] \varphi [/mm]
sin [mm] (\bruch{\pi}{2}+\varphi) [/mm] = sin [mm] \bruch{\pi}{2} [/mm] cos [mm] \varphi [/mm] + cos [mm] (\bruch{\pi}{2}) [/mm] sin [mm] \varphi [/mm]

so geht das dann weiter....

hilfreich?

Bezug
        
Bezug
Koordinaten vertauschen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:13 Mi 08.12.2010
Autor: chrisno

Ja, nun weiß ich wie Du das machst. Das mit der Spiegelung ist ok. Nun zu der Drehung in b: Mach es genau so wie in c). Was ist denn eine Drehunng um [mm] \pi/2? [/mm] Da brauchst Du keine trigonometrische Funktion.
Zu a) auch da gehst Du genau wie bei c) vor. Rein steckst Du (0 1 0) und nach der Matrix soll (0 0 1) da stehen. Dann noch einmal für (0 0 1) und herauskommen soll (0 1 0).


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]