www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungKoordinatengleichung 1er Ebene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra / Vektorrechnung" - Koordinatengleichung 1er Ebene
Koordinatengleichung 1er Ebene < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koordinatengleichung 1er Ebene: Schnittpunkte
Status: (Frage) beantwortet Status 
Datum: 14:34 So 09.01.2005
Autor: sophyyy

Zu HÜÜLF!

ich kann keine einzige aufgabe mehr rechnen, in der ich die gegenseitige lage von 2 ebenen ausrechnen soll und geg. die schnittgerade ausrechnen soll. ganz besonders "schlimm":was ist, wenn z.B. E1: 4x1 + 5x2 = 6 und E2: x1 + x3 = 0. wenn dann noch E3: 3x2 - 2x3 = -1 ist bekomm ich doch nur noch einen punkt????

also: wie gehe ich vorß x1 und x2 in abhängigkeit von x3. was aber, wenn x3 nicht vorhanden ist?? und wie geht's dann weiter??

danke im voraus

        
Bezug
Koordinatengleichung 1er Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 15:07 So 09.01.2005
Autor: e.kandrai

Bei zwei Ebenen in Koordinatenform ist es auch nicht sooo schwer, ich schreib sie nochmal mit dem Formeleditor hin:

[mm]4x_1+5x_2=6[/mm]
[mm]x_1+x_3=0[/mm]

Das sieht doch sehr aus wie ein LGS mit 3 Unbekannten ([mm]x_1,x_2,x_3[/mm]) und 2 Gleichungen.
Wie löst man das? Man braucht (weil eine Gleichung "fehlt") einen Parameter, den man für eine der Unbekannten einsetzt.

Hier ist es so, dass sogar beide Gleichungen schon so "aufgelöst" sind, dass sie nur noch jeweils zwei Unbekannte enthalten.
Hättest du zwei Ebenengleichungen, in denen noch alle Unbekannten drin sind, dann müsstest du mittels Gauß-Umformung (wie beim LGS) erstmal in einer der Gleichungen eine Unbekannte rauswerfen.

Hier ist das nicht nötig, ich kann mich direkt über die zweite Gleichung hermachen. Umformen kann ich sie zu [mm]x_1=-x_3[/mm]
Jetzt setz ich einfach [mm]x_3=:k[/mm] (ich hätte das k auch für [mm]x_1[/mm], oder wenn ich mit der anderen Gleichung angefangen hätte: für das [mm]x_2[/mm] einsetzen können, das ist völlig egal!), und erhalte mit der ersten Gleichung [mm]x_1=-k[/mm].

Das kann ich in die erste Gleichung einsetzen: [mm]4\cdot(-k)+5x_2=6[/mm]  [mm]\gdw[/mm]  [mm]5x_2=4k+6[/mm]  [mm]\gdw[/mm]  [mm]x_2=\bruch{4}{5}k+\bruch{6}{5}[/mm].

Somit hab ich gefunden: [mm]x_1=-k[/mm] , [mm]x_2=\bruch{4}{5}k+\bruch{6}{5}[/mm] , [mm]x_3=k[/mm].

[mm]x_1,x_2,x_3[/mm] sind die Komponenten des Vektors [mm]\vec{x}[/mm], also setz ich alles in den Vektor ein:
[mm]\vec{x}=\vektor{-k \\ \bruch{4}{5}k+\bruch{6}{5} \\ k}[/mm].

Jetzt trenn ich das auf in zwei Vektoren, einer nur mit k, einer nur mit Zahlen:

[mm]\vec{x}\ = \vektor{0 \\ \bruch{6}{5} \\ 0} + \vektor{-k \\ \bruch{4}{5}k \\ k}\ = \vektor{0 \\ \bruch{6}{5} \\ 0} + k \cdot \vektor{-1 \\ \bruch{4}{5} \\ 1}[/mm].

Das ist schon deine Schnittgeradengleichung.
Den Bruch im Richtungsvektor kannst du wegbekommen, indem du den ganzen Richtungsvektor mit 5 multiplizierst (das geht beim Stützvektor nicht, den lassen wir so stehen):

[mm]\vec{x}\ = \vektor{0 \\ \bruch{6}{5} \\ 0} + k \cdot \vektor{-5 \\ 4 \\ 5}[/mm].



Bezug
                
Bezug
Koordinatengleichung 1er Ebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:40 So 09.01.2005
Autor: sophyyy

aaaah- ja! klasse :-))
danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]