www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenKoordinatensysteme etc.
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - Koordinatensysteme etc.
Koordinatensysteme etc. < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koordinatensysteme etc.: Korrektur
Status: (Frage) beantwortet Status 
Datum: 16:29 Do 19.05.2011
Autor: stffn

Aufgabe
Berechnen Sie die Ableitung von [mm] $g\circ [/mm] f$ einmal direkt und einmal mit der Kettenregel.

[mm] g(x,y,z)=x*ln(x^2+y^2+z^2) [/mm]

[mm] f(r,\vartheta,\phi)=(r*sin\vartheta*cos\phi, r*sin\vartheta*sin\phi, r*cos\vartheta) [/mm]

Hallo Leute,

ich beschäftige mich das erste mal mit Kugelkoordinaten und den Zusammenhängen der Koordinatensysteme.

Meine Frage ist zunächst, ob man denn folgendes schreiben kann:

[mm] $f(r,\vartheta,\phi)=f(x, [/mm] y, z)$

weil ja, wenn man von den Kugelkoordinaten in kartesische Koordinaten umrechnet, genau [mm] $(r*sin\vartheta*cos\phi, r*sin\vartheta*sin\phi, r*cos\vartheta)=(x, [/mm] y, z)$ ist.
Wenn dem so wäre, könnte man ja einfach gleich schreiben:

$f(x, y, z)$=$(x, y, z)$

,wodurch die Aufgabe denkbar einfach werden würde.

Das ist eigentlich meine einzige Frage.
Danke euch!

        
Bezug
Koordinatensysteme etc.: Antwort
Status: (Antwort) fertig Status 
Datum: 17:01 Do 19.05.2011
Autor: Al-Chwarizmi


> Berechnen Sie die Ableitung von [mm]g\circ f[/mm] einmal direkt und
> einmal mit der Kettenregel.
>  
> [mm]g(x,y,z)=x*ln(x^2+y^2+z^2)[/mm]
>  
> [mm]f(r,\vartheta,\phi)=(r*sin\vartheta*cos\phi, r*sin\vartheta*sin\phi, r*cos\vartheta)[/mm]
>  
> Hallo Leute,
>  
> ich beschäftige mich das erste mal mit Kugelkoordinaten
> und den Zusammenhängen der Koordinatensysteme.
>  
> Meine Frage ist zunächst, ob man denn folgendes schreiben
> kann:
>  
> [mm]f(r,\vartheta,\phi)=f(x, y, z)[/mm]    [notok]
>  
> weil ja, wenn man von den Kugelkoordinaten in kartesische
> Koordinaten umrechnet, genau [mm](r*sin\vartheta*cos\phi, r*sin\vartheta*sin\phi, r*cos\vartheta)=(x, y, z)[/mm]
> ist.
>  Wenn dem so wäre, könnte man ja einfach gleich
> schreiben:
>  
> [mm]f(x, y, z)[/mm]=[mm](x, y, z)[/mm]
>  
> ,wodurch die Aufgabe denkbar einfach werden würde.
>  
> Das ist eigentlich meine einzige Frage.
> Danke euch!


So simpel ist die Sache nicht. Es werden zwei Funktionen
f und g mit je 3 Variablen zu einer neuen Funktion [mm]h=g\circ f[/mm]
verknüpft. Wir haben

    $\ [mm] h(r,\vartheta,\phi)\ [/mm] =\ [mm] g(f(r,\vartheta,\phi))\ [/mm] =\ [mm] g((r*sin\vartheta*cos\phi, r*sin\vartheta*sin\phi, r*cos\vartheta))$ [/mm]

           $\ =\ [mm] r*sin\vartheta*cos\phi*ln((r*sin\vartheta*cos\phi)^2+\,......\,+\,......\,)$ [/mm]

Die "Ableitungen", die zu bestimmen sind, bestehen
übrigens immer aus je 3 partiellen Ableitungen.

LG    Al-Chw.  





Bezug
                
Bezug
Koordinatensysteme etc.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:18 Do 19.05.2011
Autor: stffn

Sorry Das sollte als Frage rein.
Bezug
                
Bezug
Koordinatensysteme etc.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:25 Do 19.05.2011
Autor: stffn

Danke erstmal,

ich glaube ich habe mich falsch ausgedrückt.

Das hier habe ich auch noch so aufgeschrieben:

$ \ [mm] h(r,\vartheta,\phi)\ [/mm] =\ [mm] g(f(r,\vartheta,\phi))\ [/mm] =\ [mm] g((r\cdot{}sin\vartheta\cdot{}cos\phi, r\cdot{}sin\vartheta\cdot{}sin\phi, r\cdot{}cos\vartheta)) [/mm] $.

Aber wenn ich jetzt nach $(r, [mm] \vartheta, \phi)$ [/mm] ableite, passen die Ableitungen nicht mal in eine Zeile. Deshalb habe ich auch gedacht, dass es da noch einen Trick geben muss und dachte mir, dass ich mit

[mm] x=r*sin\vartheta\cdot{}cos\phi, [/mm]
[mm] y=r*sin\vartheta\cdot{}sin\phi, [/mm]
[mm] z=r*cos\vartheta [/mm]

das hier

[mm] ($g\circ [/mm] f$)'$(r, [mm] \vartheta, \phi)$=q'$(r, \vartheta, \phi)$ [/mm]

vor dem Ableiten umformen kann.
Jetzt muss ich nochmal doof fragen: geht das nicht?? muss ich also die Ableitung nach $(r, [mm] \vartheta, \phi)$ [/mm] machen?

Mein Ergebnis lautet übrigens:

[mm] q'=\vektor{ln(x^2+y^2+z^2)+\bruch{2x^2}{x^2+y^2+z^2} \\ \bruch{2xy}{x^2+y^2+z^2} \\ \bruch{2xz}{x^2+y^2+z^2}} [/mm]


Bezug
                        
Bezug
Koordinatensysteme etc.: Antwort
Status: (Antwort) fertig Status 
Datum: 18:45 Do 19.05.2011
Autor: gfm


> Danke erstmal,
>  
> ich glaube ich habe mich falsch ausgedrückt.
>  
> Das hier habe ich auch noch so aufgeschrieben:
>  
> [mm]\ h(r,\vartheta,\phi)\ =\ g(f(r,\vartheta,\phi))\ =\ g((r\cdot{}sin\vartheta\cdot{}cos\phi, r\cdot{}sin\vartheta\cdot{}sin\phi, r\cdot{}cos\vartheta)) [/mm].
>  
> Aber wenn ich jetzt nach [mm](r, \vartheta, \phi)[/mm] ableite,
> passen die Ableitungen nicht mal in eine Zeile. Deshalb
> habe ich auch gedacht, dass es da noch einen Trick geben
> muss und dachte mir, dass ich mit
>  
> [mm]x=r*sin\vartheta\cdot{}cos\phi,[/mm]
> [mm]y=r*sin\vartheta\cdot{}sin\phi,[/mm]
> [mm]z=r*cos\vartheta[/mm]
>  
> das hier
>
> ([mm]g\circ f[/mm])'[mm](r, \vartheta, \phi)[/mm]=q'[mm](r, \vartheta, \phi)[/mm]
>
> vor dem Ableiten umformen kann.
>  Jetzt muss ich nochmal doof fragen: geht das nicht?? muss
> ich also die Ableitung nach [mm](r, \vartheta, \phi)[/mm] machen?
>  
> Mein Ergebnis lautet übrigens:
>  
> [mm]q'=\vektor{ln(x^2+y^2+z^2)+\bruch{2x^2}{x^2+y^2+z^2} \\ \bruch{2xy}{x^2+y^2+z^2} \\ \bruch{2xz}{x^2+y^2+z^2}}[/mm]
>  
>  

Die Aufgabenstellung schreibt Dir vor, was Du tun sollst:

Du hast zwei Funktionen

[mm]f:\IR^3\to\IR^3; (r,\theta,\phi)\mapsto (f^x(r,\theta,\phi),f^y(r,\theta,\phi),f^z(r,\theta,\phi))[/mm] und [mm]g:\IR^3\to\IR; (x,y,z)\mapsto g(x,y,z)[/mm] gegeben und sollst

[mm] h:\IR^3\to\IR; (r,\theta,\phi)\mapsto h(r,\theta,\phi):=g(f^x(r,\theta,\phi),f^y(r,\theta,\phi),f^z(r,\theta,\phi)) [/mm]

ableiten, und zwar einmal, indem Du [mm] h(r,\theta,\phi) [/mm] direkt nach seinen Variablen ableitest und ein zweites Mal, indem Du erst die Ableitungen von g und f bestimmst und sie dann im Rahmen der Kettenregel verknüpfst.

Dabei ergibt sich für h die Gestalt [mm] f^x(r,\theta,\phi)*\ln(r^2), [/mm] was man sicher ausnutzen kann.

Und das Ergebnis ist bezüglich der Variablen [mm] r,\theta,\phi [/mm] anzugeben.

Du beziehst Dich einmal auf ein q' in den Variablen [mm] r,\theta,\phi [/mm] und gibst dann q' in x,y,z an. In diesem Kontext besteht zwischen den Variablensätzen eine funktionale Abhängigkeit, so dass die Verwendung des gleichen Funktionsbezeichners "q'" in unterschiedlichen Variablen zu einem Durcheinander führen kann.

Im übrigen hast Du [mm](\partial_xg,\partial_y g, \partial_z g)[/mm] hingeschrieben. Du sollst aber [mm](\partial_r(g\circ f),\partial_\theta (g\circ f), \partial_\phi(g\circ f))[/mm] hinschreiben und die oben erwähnten zwei Wege dazu:

[mm]\partial_r(g\circ f)=\partial_r h=...[/mm]

[mm]\partial_r(g\circ f)=(\partial_x g\circ f)*\partial_r f^x+(\partial_y g\circ f)*\partial_r f^y+(\partial_z g\circ f)*\partial_r f^z=...[/mm]

Und für den zweiten Weg kannst Du dann Dein Zwischenergebnis von oben benutzen...

LG

gfm



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]