Koordinatentransformation < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 00:22 Do 31.05.2012 | Autor: | danm357 |
Liebe Forengemeinde,
ich habe ein Problem mit folgender Rechnung:
Ich möchte die Koordinaten meines Punktes P2 bezüglich des Koordinaten-Systems $A(x,y,z)$ berechnen (vgl. Figur).
[Dateianhang nicht öffentlich]
Den Punkt [mm] $P_1$ [/mm] kann man im Koordinatensystem $A \ (x,y,z)$ einfach berechnen mittels Kugelkoordinaten:
[mm] $x_1=l_1 \cdot \sin(\theta_1) \cos(\varphi_1)$
[/mm]
[mm] $y_1=l_1 \cdot \sin(\theta_1) \sin(\varphi_1)$
[/mm]
[mm] $z_1=l_1 \cdot \cos(\theta_1)$
[/mm]
Auf ähnliche Weise lassen sich die Koordinaten des Punktes [mm] $P_2$ [/mm] im Koordinatensystem $B \ (x’,y’,z’)$ angeben:
[mm] $x_2'=l_2 \cdot \sin(\theta_2) \cos(\varphi_2)$, [/mm] etc.
Nun würde ich gerne wissen, was die Koordinaten von [mm] $P_2$ [/mm] bezüglich des Koordinatensystem $A \ (x,y,z)$ sind. Dummerweise weiss ich nicht, wie ich das berechnen soll. Ich vermute mal, dass ich dazu Rotationsmatrizen und eine Translationsverschiebung brauche. Aber ich weiss leider nicht, wie ich diese richtig anzuwenden habe (falls das der richtige Lösungsansatz ist).
Alles was ich weiss ist, dass der Ursprung des Koordinatensystems $B \ (x’,y’,z’)$ am Punkt [mm] $P_1$ [/mm] ist und dass die $z'$-Achse in dieselbe Richtung wie der Vektor [mm] $OP_1$ [/mm] in $A \ (x,y,z)$ zeigt. Die Position der $x'$-Achse ist etwas schwieriger zu beschreiben: Für [mm] $\theta_1=\pi/2$ [/mm] ist die $x’$-Achse parallel zur $z$-Achse und für [mm] $\theta_1=0$ [/mm] ist die $x’$-Achse um die $z$-Achse herum gedreht mit dem Winkel [mm] $\varphi_1$ [/mm] zwischen den $x’$- und $x$-Achsen.
Ich denke, dies sollten genügend Angaben sein, um das Problem zu lösen. Trotzdem bin ich dazu leider momentan nicht alleine fähig.
Ich hoffe daher sehr, dass ich hier etwas Hilfe erhalte! Ich würde mich über jeden Hinweis sehr freuen!
P.S.: Da ich die Aufgabe als nicht so einfach erachte (ich habe es ja selber nicht lösen können), habe ich diese Frage noch auf folgenden Seiten online gestellt, um die Resonanz zu erhöhen:
Link1
und
Link2
Bevor ihr also Tipps abgebt, könnt ihr vielleicht kontrollieren, ob es woanders nicht schon andere getan haben.
Dateianhänge: Anhang Nr. 1 (Typ: png) [nicht öffentlich]
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:51 Fr 01.06.2012 | Autor: | leduart |
im anderen forum geloest
leduart
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 23:13 So 03.06.2012 | Autor: | danm357 |
Die Antwort in dem anderen Forum hat sich leider als falsch herausgestellt. Ich suche immer noch verzweifelt nach einer Lösung.
Kann man die Frage irgendwie wieder auf "offen" setzen?
|
|
|
|
|
Hallo,
du musst doch nur beide Kugelkoordinatenabbildungen aufaddieren:
[mm] $x_1 [/mm] = [mm] l_1*\sin(\theta_1) \cos(\phi_1) [/mm] + [mm] l_2*\sin(\theta_2)*\cos(\phi_2)$,
[/mm]
usw.
Viele Grüße,
Stefan
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 08:53 Mo 04.06.2012 | Autor: | danm357 |
Das dachte ich anfänglich auch, aber das ist nicht die Lösung. Sei z.B. [mm] $\varphi_1 [/mm] = [mm] \pi$ [/mm] und [mm] $\theta_1= \pi/2$, [/mm] dann ist [mm] $P_1$ [/mm] bei der Koordinate [mm] $(-l_1,0,0)$. [/mm] Sei nun [mm] $\varphi_2 [/mm] = 0$ und [mm] $\theta_2 [/mm] = 0$, dann ist [mm] $P_2$ [/mm] im gestrichenen System bei [mm] $(0,0,l_2)$. [/mm] Bezüglich dem ungestrichenen System hat [mm] $P_2$ [/mm] die Koordinaten [mm] $(-l_1-l_2,0,0)$ [/mm] (vgl. beiliegenden Hilfszeichnung).
[Dateianhang nicht öffentlich]
Ich hoffe, Du erkennst, dass Dein Lösungsansatz nicht auf dieses Resultat kommt (Danke trotzdem für den Vorschlag und dem Interesse an dieser Aufgabe).
Das Problem ist wohl, dass je nach [mm] $\theta_1$, $\varphi_1$ [/mm] die z.B. $z'$-Achse zur $x$-Achse etc. werden kann. Bzw. etwas allgemeiner ausgedrückt: die Komponenten von [mm] $P_2$ [/mm] bezüglich dem ungestrichenen System sind von den Winkeln in dem ungestrichenen System abhängig.
Die Lösung müsste also in der Form [mm] $x_2 [/mm] = [mm] x_1 [/mm] + [mm] a(\theta_1, \varphi_1)\cdot x_1' [/mm] + [mm] b(\theta_1, \varphi_1)\cdot y_1' [/mm] + [mm] c(\theta_1, \varphi_1)\cdot z_1'$ [/mm] (ähnlich für [mm] $y_2, [/mm] \ [mm] z_2$) [/mm] sein, wobei $ [mm] a(\theta_1, \varphi_1)\$ [/mm] etc. irgendwelche mir unbekannte Faktoren sind, die von [mm] $\theta_1, [/mm] \ [mm] \varphi_1$ [/mm] abhängen.
Ich hoffe sehr, dass die neue Hilfszeichung und die neue Lösungsidee dazu beitragen, eine Lösung zu finden. Über neue Antworten, Tipps oder auch Rückfragen würde ich mich sehr freuen!
Dateianhänge: Anhang Nr. 1 (Typ: png) [nicht öffentlich]
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:10 Sa 16.06.2012 | Autor: | leduart |
Hallo
zuerst verschibst du dein x# System um den -Vekor zu pe nach (0,0,0)des x Systems. danach bestimmst du ddie matrix, die das # system in das x system dreht.
gruss leduart
|
|
|
|