www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraKoordinatenvektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Koordinatenvektoren
Koordinatenvektoren < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koordinatenvektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:38 Sa 19.01.2008
Autor: Sofie33

Aufgabe
Im Vektorraum der reellen Polynome vom Grad höchstens 4 seien die beiden Basen B [mm] =(1,x,x^2,x^3,x^4) [/mm] und [mm] B'=(1,(x-1),(x-1)^2,(x-1)^3,(x-1)^4) [/mm] gegeben.
Bestimmen sie Koordinatenvektoren von [mm] p'=(x+2)^4-(x+2)^2+(x+2)+5 [/mm]
und [mm] p=2x^3-3x+1 [/mm] bezüglich B und B'. Bestimmen Sie das Polynom q mit

[mm] q=\vektor{2\\1\\-1\\2\\3}B' [/mm]

Also ich hab das bis jetzt so gerechnet und vielleicht kann mir einer sagen ob ich das richtig gemacht hab.

[mm] p(x)_{B}=a_{o}+a_{1}x+a_{2}x^2+a_{3}x^3+a_{4}x^4=\vektor{a_{0}\\a_{1}\\a_{2}\\a_{3}\\a_{4}} [/mm]

Bei [mm] p(x)_{B'} [/mm] hab ich folgendes gemacht:

[mm] a_{0}+a_{1}x+a_{2}x^2+a_{3}x^3+a_{4}x^4 [/mm] = [mm] a'_{0}+a'_{1}(x-1)+a'_{2}(x-1)^2+a'_{3}(x-1)^3+a'_{4}(x-1)^4 [/mm]

Das hab ich aufgelöst und je [mm] a_{0} [/mm] bis [mm] a_{4} [/mm] bestimmt, das wäre dann:

[mm] p(x)_{B'}=\vektor{a_{o}+a_{1}-3a_{2}-5a_{3}+39a_{4}\\a_{1}+2a_{2}+3a_{3}-26a_{4}\\a_{2}+3a_{3}-12a_{4}\\a_{3}+2a_{4}\\a_{4}} [/mm]


Dann setze ich jeweils die a{0} bis [mm] a_{4} [/mm] ein dann erhalte ich:

[mm] p(x)_{B}=\vektor{1\\-3\\0\\2\\0} [/mm]
[mm] p(x)_{B'}=\vektor{12\\3\\4\\2\\0} [/mm]

[mm] p'(x)_{B}=\vektor{19\\1\\-1\\0\\1} [/mm]
[mm] p'(x)_{B'}=\vektor{62\\-27\\-13\\2\\1}=\vektor{31\\-13,5\\-6,5\\1\\0,5} [/mm]

Ich weiß nich ob ich das so richtig gemacht hab und wie bekomme ich das Polynom zu q raus? Wäre ja eigendlich der umgedrehte Weg.

        
Bezug
Koordinatenvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 15:00 Sa 19.01.2008
Autor: koepper

Hallo Sophie,

mich würde als erstes interessieren, an welcher Uni und in welchem Kurs so etwas im Hauptstudium gemacht wird.
Das ist gerade mal etwas anspruchsvolleres Schulniveau.

Wenn du tatsächlich Mathematik studierst, beantwortest du die Frage mit einem Satz:
Die Koeffizienten der (endlichen) Taylor-Reihe mit Entwicklungspunkt 0 bzw. 1 liefern die gesuchten Koordinatenvektoren.

Für die letzte Frage ist schlicht die zum gegebenen Koordinatenvektor gehörende Linearkombination der Basisvektoren zu bilden.

Einem Schüler müßte man das natürlich anders erklären ;-)
Aber unsere Erklärungen hier orientieren sich natürlich am angegebenen Background.

LG
Will

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]