Koordinatenwechselmatrix/Basen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Betrachten Sie die Basen [mm] \varepsilon_{3}=(e_{1}, e_{2}, e_{3}) [/mm] und [mm] B=\{(0,1,1)^{t}, (1,0,1)^{t}, (1,1,0)^{t}\} [/mm] für den [mm] \IR^{3}.
[/mm]
(i) Bestimmen Sie [mm] [2e_{1} [/mm] + [mm] 2e_{2} [/mm] + 2 [mm] e_{3}]_{B}
[/mm]
(ii) Geben Sie die Koordinatenwechselmatrix Q für den Wechsel von B nach [mm] \varepsilon_{3} [/mm] an.
(iii) Wi könnten Sie aus der in (ii) bestimmten Matrix Q die Koordinatenwechselmatrix zum Wechsel von [mm] \varepsilon_{3} [/mm] nach B berechnen (die Berechnung brauchen Sie nicht durchzuführen!)? |
Guten Abend liebes Matheforum,
ich habe mit dieser Aufgabe ziemliche Probleme. Allgemein muss ich sagen, dass ich kein Freund der Themen um Basiswechsel und Koordinatenwechselmatrixtzen bin.
(i) Wie bestimme ich hier diese Basis? Ich habe keinen Schimmer, denn eine lineare Abbildung ist ja nicht wirklich gegeben.
(ii) Also die Koordinatenwechselmatrix ist ja so definiert:
[mm] Q^{B}_{\varepsilon_{3}}=(\vektor{0 \\ 1 \\ 1}_{\varepsilon_{3}} [/mm] | [mm] \vektor{1 \\ 0 \\ 1}_{\varepsilon_{3}} [/mm] | [mm] \vektor{1 \\ 1 \\ 0}_{\varepsilon_{3}}). [/mm] Nur wie hilft mir das weiter, wie muss ich weiter machen?
(iii) Hmm geht es hier um Definition von ähnlichen Matritzen oder muss man hier invertieren?
Also ich wäre die sehr dankbar um eure Hilfe!
Einen Schönen Abend noch,
rubstudent88
|
|
|
|
> Betrachten Sie die Basen [mm]\varepsilon_{3}=(e_{1}, e_{2}, e_{3})[/mm]
> und [mm]B=\{(0,1,1)^{t}, (1,0,1)^{t}, (1,1,0)^{t}\}[/mm] für den
> [mm]\IR^{3}.[/mm]
> (i) Bestimmen Sie [mm][2e_{1}+ 2e_{2},2 e_{3}]_{B}[/mm]
> (ii) Geben
> Sie die Koordinatenwechselmatrix Q für den Wechsel von B
> nach [mm]\varepsilon_{3}[/mm] an.
> (iii) Wi könnten Sie aus der in (ii) bestimmten Matrix Q
> die Koordinatenwechselmatrix zum Wechsel von
> [mm]\varepsilon_{3}[/mm] nach B berechnen (die Berechnung brauchen
> Sie nicht durchzuführen!)?
> (i) Wie bestimme ich hier diese Basis? Ich habe keinen
> Schimmer, denn eine lineare Abbildung ist ja nicht wirklich
> gegeben.
Hallo,
Du müßtest mal die Schreibweise erklären. Was ist mit dieser eckigen Klammer gemeint und mit dem tiefgestellten B da dran?
> (ii) Also die Koordinatenwechselmatrix ist ja so
> definiert:
> [mm]Q^{B}_{\varepsilon_{3}}=(\vektor{0 \\ 1 \\ 1}_{\varepsilon_{3}}[/mm]
> | [mm]\vektor{1 \\ 0 \\ 1}_{\varepsilon_{3}}[/mm] | [mm]\vektor{1 \\ 1 \\ 0}_{\varepsilon_{3}}).[/mm]
> Nur wie hilft mir das weiter, wie muss ich weiter machen?
Du bist bereit fertig. Die Matrix, welche die Basisvektoren von B in Koordinaten bzgl. [mm] \varepsilon_{3} [/mm] enthält, ist die gesuchte Matrix. Sie wnadelt Dir Koordinatenvektoren bzgl. B in solche bzgl der Standardbasis um.
> (iii) Hmm geht es hier um Definition von ähnlichen
> Matritzen oder muss man hier invertieren?
Letzteres. Die gesuhte Matrix beschreibt die Umkehrung von ii), also ist [mm] Q^{-1} [/mm] die gesuchte Matrix.
Gruß v. Angela
>
> Also ich wäre die sehr dankbar um eure Hilfe!
>
> Einen Schönen Abend noch,
>
> rubstudent88
|
|
|
|
|
> > Betrachten Sie die Basen [mm]\varepsilon_{3}=(e_{1}, e_{2}, e_{3})[/mm]
> > und [mm]B=\{(0,1,1)^{t}, (1,0,1)^{t}, (1,1,0)^{t}\}[/mm] für den
> > [mm]\IR^{3}.[/mm]
> > (i) Bestimmen Sie [mm][2e_{1}+ 2e_{2},2 e_{3}]_{B}[/mm]
> > (ii)
> Geben
> > Sie die Koordinatenwechselmatrix Q für den Wechsel von B
> > nach [mm]\varepsilon_{3}[/mm] an.
> > (iii) Wi könnten Sie aus der in (ii) bestimmten Matrix
> Q
> > die Koordinatenwechselmatrix zum Wechsel von
> > [mm]\varepsilon_{3}[/mm] nach B berechnen (die Berechnung brauchen
> > Sie nicht durchzuführen!)?
>
> > (i) Wie bestimme ich hier diese Basis? Ich habe keinen
> > Schimmer, denn eine lineare Abbildung ist ja nicht wirklich
> > gegeben.
>
> Hallo,
>
> Du müßtest mal die Schreibweise erklären. Was ist mit
> dieser eckigen Klammer gemeint und mit dem tiefgestellten B
> da dran?
Guten Morgen Angela,
genau das war ja auch meine Frage. Ich habe die Aufgabe so aufgeschrieben, wie sie auf unserer Probeklausur steht. Mehr Infos habe ich leider nicht.
Wobei ein Fehler ist da doch noch: [mm] [2e_{1}+ 2e_{2}+2 e_{3}]_{B}. [/mm] Da musste zwischen [mm] e_{2} [/mm] und [mm] e_{3} [/mm] noch ein + hin.
> > (ii) Also die Koordinatenwechselmatrix ist ja so
> > definiert:
> > [mm]Q^{B}_{\varepsilon_{3}}=(\vektor{0 \\ 1 \\ 1}_{\varepsilon_{3}}[/mm]
> > | [mm]\vektor{1 \\ 0 \\ 1}_{\varepsilon_{3}}[/mm] | [mm]\vektor{1 \\ 1 \\ 0}_{\varepsilon_{3}}).[/mm]
> > Nur wie hilft mir das weiter, wie muss ich weiter machen?
>
> Du bist bereit fertig. Die Matrix, welche die Basisvektoren
> von B in Koordinaten bzgl. [mm]\varepsilon_{3}[/mm] enthält, ist die
> gesuchte Matrix. Sie wnadelt Dir Koordinatenvektoren bzgl.
> B in solche bzgl der Standardbasis um.
Alles klar, dann muss ich also des also nur noch in eine Matrix zusammenfassen:?
[mm] \pmat{0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0}
[/mm]
> > (iii) Hmm geht es hier um Definition von ähnlichen
> > Matritzen oder muss man hier invertieren?
>
> Letzteres. Die gesuhte Matrix beschreibt die Umkehrung von
> ii), also ist [mm]Q^{-1}[/mm] die gesuchte Matrix.
>
> Gruß v. Angela
>
Jup danke, das habe ich verstanden :).
Au revoir,
rubstudent88
|
|
|
|
|
> > > Betrachten Sie die Basen [mm]\varepsilon_{3}=(e_{1}, e_{2}, e_{3})[/mm]
> > > und [mm]B=\{(0,1,1)^{t}, (1,0,1)^{t}, (1,1,0)^{t}\}[/mm] für den
> > > [mm]\IR^{3}.[/mm]
> > > (i) Bestimmen Sie [mm][2e_{1}+ 2e_{2},2 e_{3}]_{B}[/mm]
> > >
> (ii)
> > Geben
> > > Sie die Koordinatenwechselmatrix Q für den Wechsel von B
> > > nach [mm]\varepsilon_{3}[/mm] an.
> > > (iii) Wi könnten Sie aus der in (ii) bestimmten
> Matrix
> > Q
> > > die Koordinatenwechselmatrix zum Wechsel von
> > > [mm]\varepsilon_{3}[/mm] nach B berechnen (die Berechnung brauchen
> > > Sie nicht durchzuführen!)?
> >
> > > (i) Wie bestimme ich hier diese Basis? Ich habe keinen
> > > Schimmer, denn eine lineare Abbildung ist ja nicht wirklich
> > > gegeben.
> >
> > Hallo,
> >
> > Du müßtest mal die Schreibweise erklären. Was ist mit
> > dieser eckigen Klammer gemeint und mit dem tiefgestellten B
> > da dran?
>
> Guten Morgen Angela,
>
> genau das war ja auch meine Frage. Ich habe die Aufgabe so
> aufgeschrieben, wie sie auf unserer Probeklausur steht.
> Mehr Infos habe ich leider nicht.
> Wobei ein Fehler ist da doch noch: [mm][2e_{1}+ 2e_{2}+2 e_{3}]_{B}.[/mm]
> Da musste zwischen [mm]e_{2}[/mm] und [mm]e_{3}[/mm] noch ein + hin.
Hallo,
dann ist alles Klar. Du sollst den Vektor [mm] 2e_{1}+ 2e_{2}+2 e_{3} [/mm] als Koordinatenvektor bzgl B schreiben, also [mm] \vektor{2\\2\\2} [/mm] als Linearkombination der vektoren aus B schreiben. Die "gestapelten" Koeffizienten sind dann der Koodinatenvektor bzgl. B.
Das andere mit der Matrix ist richtig.
Gruß v. Angela
|
|
|
|