www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikKorrelation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Korrelation
Korrelation < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Korrelation: Bitte Lösung prüfen
Status: (Frage) beantwortet Status 
Datum: 13:50 So 21.02.2010
Autor: Cybrina

Aufgabe
Es seien X und Y unabhängige reelle Zufallsvariable ..., die identisch verteilt sind entsprechend der Gleichverteilung auf dem Interval (0,1), d.h. [mm] X,Y\sim [/mm] U(0,1).
Berechnen Sie die Korrelation von X und X+Y.

Bitte mal drüberschauen, ob das so richtig ist, und ob man das evtl. einfacher hätte machen können. Kommt mir so umständlich vor...

[mm] \rho(X,X+Y)=\bruch{cov(X,X+Y)}{\sqrt{var(X)*var(X+Y)}} [/mm]
[mm] =\bruch{E(X(X+Y))-E(X)*E(X+Y)}{...} [/mm]
[mm] =\bruch{EX^2+E(XY)-E(X)*E(X+Y)}{...} [/mm]
[mm] =\bruch{2EX^2-0,5*1}{\sqrt{(EX^2-(EX)^2)(E(X+Y)^2-(E(X+Y))^2)}} [/mm]
[mm] =\bruch{2EX^2-0,5}{\sqrt{(EX^2-0,25)(EX^2+2E(XY)+EY^2-1)}} [/mm]
[mm] =\bruch{2EX^2-0,5}{\sqrt{(EX^2-0,25)(4EX^2-1)}} [/mm]
[mm] =\bruch{2EX^2-0,5}{\sqrt{4(EX^2)^2-2EX^2+0,25}} [/mm]
[mm] =\bruch{2EX^2-0,5}{\sqrt{(2EX^2-0,5)^2}} [/mm]
=1

        
Bezug
Korrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 17:33 So 21.02.2010
Autor: luis52


>  Bitte mal drüberschauen, ob das so richtig ist

[notok]

> , und ob
> man das evtl. einfacher hätte machen können. Kommt mir so
> umständlich vor...

>

Stimmt. Berechne Zaehler und Nenner separat. Nutze aus [mm] $\text{Cov}[X,X+Y]=\text{Cov}[X,X]+\text{Cov}[X,Y]$ [/mm] und [mm] $\text{Var}[X+Y]= \text{Var}[X]+\text{Var}[Y]$. [/mm] (Warum gilt das?)

vg Luis
  


Bezug
                
Bezug
Korrelation: Rückfrage und Korrektur
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:30 So 21.02.2010
Autor: Cybrina

Okay, neuer Versuch:

[mm] \rho(X,X+Y)=\bruch{cov(X,X+Y)}{\sqrt{var(X)*var(X+Y)}} [/mm]
[mm] =\bruch{cov(X,X)+cov(X,Y)}{\sqrt{var(X)*(var(X)+var(Y)+2cov(X,Y)}} [/mm]
[mm] =\bruch{var(X)}{\sqrt{(var(X))^2+(var(X))^2}} [/mm]     (cov(X,Y)=0 da X und Y unabhängig)
[mm] =\bruch{1}{\sqrt{2}} [/mm]

Stimmt das jetzt? Außerdem würde ich auch gern noch wissen, was bei meinem 1. Versuch falsch gelaufen ist (außer dass es umständlich war)?!

Bezug
                        
Bezug
Korrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 19:22 So 21.02.2010
Autor: steppenhahn

Hallo Cybrina,

> Okay, neuer Versuch:
>  
> [mm]\rho(X,X+Y)=\bruch{cov(X,X+Y)}{\sqrt{var(X)*var(X+Y)}}[/mm]
>  
> [mm]=\bruch{cov(X,X)+cov(X,Y)}{\sqrt{var(X)*(var(X)+var(Y)+2cov(X,Y)}}[/mm]
>  [mm]=\bruch{var(X)}{\sqrt{(var(X))^2+(var(X))^2}}[/mm]    
> (cov(X,Y)=0 da X und Y unabhängig)
>  [mm]=\bruch{1}{\sqrt{2}}[/mm]
>  
> Stimmt das jetzt? Außerdem würde ich auch gern noch
> wissen, was bei meinem 1. Versuch falsch gelaufen ist
> (außer dass es umständlich war)?!

Ja, das stimmt jetzt.

Grüße,
Stefan

Bezug
        
Bezug
Korrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 19:49 So 21.02.2010
Autor: luis52

>
> [mm]\rho(X,X+Y)=\bruch{cov(X,X+Y)}{\sqrt{var(X)*var(X+Y)}}[/mm]
>  [mm]=\bruch{E(X(X+Y))-E(X)*E(X+Y)}{...}[/mm]
>  [mm]=\bruch{EX^2+E(XY)-E(X)*E(X+Y)}{...}[/mm]
>  
> [mm]=\bruch{2EX^2-0,5*1}{\sqrt{(EX^2-(EX)^2)(E(X+Y)^2-(E(X+Y))^2)}}[/mm]

[notok]   [mm] $\text{E}[X^2]\ne\text{E}[XY]$ [/mm]

vg Luis


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]