Kosten und Erlösfunktion < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:21 Di 13.03.2012 | Autor: | Missy19 |
Aufgabe | Gegeben sind die folgenden Daten einer Firma:
Kostenfunktion: K(x)= [mm] x^3-3x^2+4x+20
[/mm]
Erlösfunktion: E(x)= 13x
max. Produktionsmenge pro Periode 10ME
Rechnereinsatz ist erlaubt!
a) Geben Sie die Wirtschaflichtkeitsfunktion W und deren ökonomischen Defintionsbereich an. Skizzieren Sie den Funktionsgraph von W.
b) Brechnen Sie die Maximalstelle und das Maximum von W!
c) Bei welcher Produktionsmengen ist die Wirtschaftlichkeit 1?
Welche wirtschaftliche Bedeutung haben diese berechneten Mengen ? |
Hier mein Ansatz:
a) W. Funktion lautet ja dann W(x)= 13x/ [mm] x^3-3x^2+4x+20
[/mm]
Definitionsbereich würde ich ma sagen D(x)= (0/20)
b) Nun zur Max stelle brauch ich dafür nicht die 1. und 2. Ableitung ? (extremstelle) die 2. Ableitung um zu überprüfen, aber wie leite ich die Funktion ab ?
c) muss ich da für x=1 einsetzen ?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo Missy19 und ,
> Gegeben sind die folgenden Daten einer Firma:
> Kostenfunktion: K(x)= [mm]x^3-3x^2+4x+20[/mm]
> Erlösfunktion: E(x)= 13x
> max. Produktionsmenge pro Periode 10ME
>
> Rechnereinsatz ist erlaubt!
>
> a) Geben Sie die Wirtschaflichtkeitsfunktion W und deren
> ökonomischen Defintionsbereich an. Skizzieren Sie den
> Funktionsgraph von W.
>
> b) Brechnen Sie die Maximalstelle und das Maximum von W!
>
> c) Bei welcher Produktionsmengen ist die Wirtschaftlichkeit
> 1?
> Welche wirtschaftliche Bedeutung haben diese berechneten
> Mengen ?
> Hier mein Ansatz:
>
> a) W. Funktion lautet ja dann W(x)= 13x/ [mm]x^3-3x^2+4x+20[/mm]
?? Also [mm]W(x)=\frac{13x}{x^3}-3x^2+4x+20[/mm] ??
Punkt- vor Strichrechnung gilt in Mitteleuropa!!
Ich denke nicht, es ist doch [mm]W(x)=\frac{E(x)}{K(x)}=13x/\red{(}x^3-3x^2+4x+20\red{)}[/mm] oder schöner mit dem Editor: [mm]W(x)=\bruch{13x}{x^3-3x^2+4x+20}[/mm] <-- klick
>
> Definitionsbereich würde ich ma sagen D(x)= (0/20)
Wieso das? Und was soll dies bedeuten? Nur [mm]x=0[/mm] und [mm]x=20[/mm] darfst du einsetzen? Oder soll das das offene Intervall von 0 bis 20 sein?!
Du musst doch nur die Nullstellen des Nenners, also von [mm]K(x)[/mm] herausnehmen.
[mm]W(x)[/mm] ist erstmal für alle [mm]x\in\IR[/mm] definiert, für die [mm]K(x)\neq 0[/mm] ist
(durch 0 teilen ist verboten)
Dann musst du vllt. noch die Einschränkung an die Produktionsmenge pro Periode beachten - aber ich kenne mich mit diesen BWL-Begriffen nicht aus ...
>
> b) Nun zur Max stelle brauch ich dafür nicht die 1. und 2.
> Ableitung ? (extremstelle) die 2. Ableitung um zu
> überprüfen, aber wie leite ich die Funktion ab ?
Mit der Quotientenregel: [mm]f(x)=\frac{u(x)}{v(x)}\Rightarrow f'(x)=\frac{u'(x)\cdot{}v(x)-u(x)\cdot{}v'(x)}{(v(x))^2}[/mm]
>
>
> c) muss ich da für x=1 einsetzen ?
Ich denke eher, dass du [mm]W(x)=1[/mm] nach [mm]x[/mm] auflösen musst ...
>
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
Gruß
schachuzipus
|
|
|
|