www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisKostenfunktion mit max Gewinn
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Kostenfunktion mit max Gewinn
Kostenfunktion mit max Gewinn < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kostenfunktion mit max Gewinn: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:05 Mi 01.12.2004
Autor: hamburger0203

Ein Unternehmen produziert Reifen. Die bei der Produktion entstehenden Kosten lassen sich approximativ durch die Funktion K(x) beschreiben. K(x) lautet:

K(x)=

Jetzt soll ich die Ausbringungsmenge x* berechnen, für die der Gewinn maximal wird, wenn ein Verkaufspreis von 45,--€ pro ME zugrunde gelegt wird und für die Erlösfunktion E(x)= p mal x   gilt.
Und ich soll den maximalen Gewinn angeben.

K(x)=x³-x²+5x+10
K'(x)=3x²-2x+5
K''(x)=6x-2
K'''(x)=6

Nun Muß ich die erste Ableitung zu null setzen (glaube ich).?

K'(x)=3x²-2x+5=0
K'(x)=3(x²-2/3x+5/3)

Habe ich nun in die PQ-Formel gesetzt?

X1,2=+1/3+-Wurzel aus 1/3²+5/3
X1,2=+1/3+-Wurzel aus 16/9
X1,2=+1/3+-4/3
X1=-1
X2=5/3

nun setze ich es in die Zweite Ableitung?

K''(x)=6x-2

setze X1=-1
K''(-1)=-6-2=-8
K''(5/3)=10-2=8

Jetzt bin ich mit meinem Latein am ende. Ich weiß jetzt noch nicht einmal ob 8 oder -8 der maximale Einsatz ist. Und wie muß ich weiter machen?
Ich hoffe, dass mir einer von Euch helfen kann wär echt sehr nett, da diese Aufgabe mir noch fehlt.


        
Bezug
Kostenfunktion mit max Gewinn: Antwort
Status: (Antwort) fertig Status 
Datum: 20:56 Mi 01.12.2004
Autor: cremchen

Halli hallo!

> Ein Unternehmen produziert Reifen. Die bei der Produktion
> entstehenden Kosten lassen sich approximativ durch die
> Funktion K(x) beschreiben. K(x) lautet:
>  
> K(x)=
>
> Jetzt soll ich die Ausbringungsmenge x* berechnen, für die
> der Gewinn maximal wird, wenn ein Verkaufspreis von 45,--€
> pro ME zugrunde gelegt wird und für die Erlösfunktion E(x)=
> p mal x   gilt.

> Und ich soll den maximalen Gewinn angeben.
>  
> K(x)=x³-x²+5x+10
>  K'(x)=3x²-2x+5
>  K''(x)=6x-2
>  K'''(x)=6

Hier hast du einen kleinen Fehler gemacht:
Du sollst ja die Menge x bestimmen, die den Gewinn maximiert: Die Gewinnfunktion setzt sich zusammen aus der Erlösfunktion und der Kostenfunktion, also G(x)=E(x)-K(x)
Es ergibt sich also als Gewinnfunktion:
[mm] G(x)=45x-x^{3}+x^{2}-5x-10=-x^{3}+x^{2}+40x-10 [/mm]

>  
> Nun Muß ich die erste Ableitung zu null setzen (glaube
> ich).?

Genau!

>  
> Habe ich nun in die PQ-Formel gesetzt?

auch richtig, es muß aber lauten
[mm] x_{1,2}=-\bruch{p}{2}*\wurzel{\bruch{p^{2}}{4}-q} [/mm]
Als du gerechnet hast, hast du mit + gerechnet! Hättest du richtig mit - gerechnet, hättest du gemerkt, dass deine Kostenfunktion keine Extremstellen hat.

>  
> nun setze ich es in die Zweite Ableitung?
>  

auch richtig

> Jetzt bin ich mit meinem Latein am ende. Ich weiß jetzt
> noch nicht einmal ob 8 oder -8 der maximale Einsatz ist.

Ist der Wert von [mm] K''(x_{1,2}) [/mm] negativ, so handelt es sich um eine Maximalstelle, ist er positiv, so handelt es sich um eine Minimalstelle!

Hast du dann deinen maximalen Wert gefunden, so bist du im Prinzip fertig!
Vielleicht könntest du deinen maximalen Gewinn noch berechnen - der Vollständigkeit halber!

Wenn du noch Fragen hast dann melde dich nochmal!

Liebe Grüße
Ulrike

Bezug
                
Bezug
Kostenfunktion mit max Gewinn: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:14 Do 02.12.2004
Autor: hamburger0203

Hallo Ulrike,

Du bist echt ein Schatz !!!
Vielen vielen Dank für Deine super Hilfe, ich war wirklich schon total verzweifelt.
Ich werde Deine Ansätze jetzt überarbeiten, und hoffe, daß Du mir bei eventuellen Rückfragen noch zur Seite stehst!

Viele liebe Grüße,
Ivan
Hamburger0203

Bezug
                
Bezug
Kostenfunktion mit max Gewinn: Frage
Status: (Frage) beantwortet Status 
Datum: 18:53 Do 02.12.2004
Autor: hamburger0203

Ein Unternehmen produziert Reifen. Die bei der Produktion entstehenden Kosten lassen sich approximativ durch die Funktion K(x) beschreiben. K(x) lautet:

K(x)=

Jetzt soll ich die Ausbringungsmenge x* berechnen, für die der Gewinn maximal wird, wenn ein Verkaufspreis von 45,--€ pro ME zugrunde gelegt wird und für die Erlösfunktion E(x)= p mal x   gilt.
Und ich soll den maximalen Gewinn angeben.

K(x)=x³-x²+5x+10

Die Gewinnfunktion setzt sich wie folgt zusammen G(x)=E(x)-K(x)

G(x)=45x-(x³-x²+5x+10)
G(x)=-x³+x²+40x-10
G'(x)=-3x²+2x+40
G''(x)=-6X+2

Um die Extrempunkte zu finde muß ich die erste Ableitung zu null setzten.

G'(x)=-3x²+2x+40=0
G'(x)= -3 * (x² +2/3x +40/3)

setze diesen Ausdruck nun in die pq -Formel ein.

x1,2 =-1/3+- Wurzel aus (1/3)²+40/3
x1,2 =-1/3+-11/3
x1=-4
x2=10/3

nun setze ich meine Ergebnisse in die zweite Ableitung um rauszufinden, ob es ein Maximum oder ein Minimum ist.

G''(x)=-6x+2
G''(-4)=-6 * (-4) +2 =26 (Minimum)
G''(10/3)=-6 * 10/3) + 2 = - 18 (Maximum)

G(10/3)= -10/3³ + 10/3² +40 * 10/3 -10
G(10/3)=97,40740741
G(10/3)=97

Ist diese Aufgabe richtig ?

Bezug
                        
Bezug
Kostenfunktion mit max Gewinn: Antwort
Status: (Antwort) fertig Status 
Datum: 20:35 Do 02.12.2004
Autor: cremchen

Halli hallo!

> Ein Unternehmen produziert Reifen. Die bei der Produktion
> entstehenden Kosten lassen sich approximativ durch die
> Funktion K(x) beschreiben. K(x) lautet:
>  
> K(x)=
>
> Jetzt soll ich die Ausbringungsmenge x* berechnen, für die
> der Gewinn maximal wird, wenn ein Verkaufspreis von 45,--€
> pro ME zugrunde gelegt wird und für die Erlösfunktion E(x)=
> p mal x   gilt.
> Und ich soll den maximalen Gewinn angeben.
>  
> K(x)=x³-x²+5x+10
>  
> Die Gewinnfunktion setzt sich wie folgt zusammen
> G(x)=E(x)-K(x)
>  
> G(x)=45x-(x³-x²+5x+10)
>  G(x)=-x³+x²+40x-10
>  G'(x)=-3x²+2x+40
>  G''(x)=-6X+2
>  
> Um die Extrempunkte zu finde muß ich die erste Ableitung zu
> null setzten.
>  
> G'(x)=-3x²+2x+40=0

[ok]

>  G'(x)= -3 * (x² +2/3x +40/3)

[notok]
[mm] G'(x)=-3*(x^{2}-\bruch{2}{3}*x-\bruch{40}{3}*x) [/mm]

> setze diesen Ausdruck nun in die pq -Formel ein.
>  
> x1,2 =-1/3+- Wurzel aus (1/3)²+40/3

[mm] x_{1,2}=-\bruch{1}{3}\pm\wurzel{\bruch{1}{9}-(-\bruch{40}{3})} [/mm]

>  x1,2 =-1/3+-11/3
>  x1=-4
>  x2=10/3

[ok]

> nun setze ich meine Ergebnisse in die zweite Ableitung um
> rauszufinden, ob es ein Maximum oder ein Minimum ist.
>  
> G''(x)=-6x+2
>  G''(-4)=-6 * (-4) +2 =26 (Minimum)
>  G''(10/3)=-6 * 10/3) + 2 = - 18 (Maximum)
>  
> G(10/3)= -10/3³ + 10/3² +40 * 10/3 -10
>  G(10/3)=97,40740741
>  G(10/3)=97
>  
> Ist diese Aufgabe richtig ?

Wunderbar!
Vielleicht kannst du den Gewinn, statt ihn so auszuschreiben, ja so darstellen:
[mm] G(\bruch{10}{3})=97\bruch{11}{27} [/mm]

Liebe Grüße
Ulrike

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]