www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikKovarianz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Kovarianz
Kovarianz < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kovarianz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:57 So 11.01.2015
Autor: Mathe-Lily

Aufgabe
[mm] X_1,...,X_n [/mm] seien unabhängig N(0,1)-verteilt.
1) Was ist [mm] Kov(X_1-\overline{X_n},\overline{X_n})? [/mm]
2) Wie ist [mm] Kov(X_1-\overline{X_n},\overline{X_n}) [/mm] verteilt?
3) Sind [mm] X_1-\overline{X_n} [/mm] und [mm] \overline{X_n} [/mm] unabhängig?

Hallo!
Bei dieser Aufgabe stehe ich ziemlich auf dem Schlauch!
[mm] \overline{X_n}=\bruch{1}{n} \summe_{i=1}^n X_i [/mm]
Daher habe ich [mm] X_1-\overline{X_n}=\bruch{n-1}{n}X_1-\bruch{1}{n} \summe_{i=2}^n X_i [/mm] berechnet.
Und da hört es auch schon auf.

Ich weiß, dass die Kov(X,Y)=0, wenn X und Y unabhängig,
also sollte man vielleicht zuerst 3) bearbeiten...
aber ich bekomme keinen Zugang dazu.
Kann mir da jemand weiter helfen?
Das wäre klasse!

Grüßle, Lily

        
Bezug
Kovarianz: Antwort
Status: (Antwort) fertig Status 
Datum: 21:07 So 11.01.2015
Autor: luis52

Zu 1) Es gilt $Kov[X+Y,U+V]=Kov[X,U]+Kov[X,V]+Kov[Y,U]+Kov[Y,V]$
Zu 2) Die Aufgabenstellung ergibt keinen Sinn.
Zu 3) Es kann sein, dass Kovarianz nicht null ist. Dann sind sie auch nicht unabhaengig.

Bezug
                
Bezug
Kovarianz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:27 Mo 12.01.2015
Autor: Mathe-Lily

Danke erstmal! :-)

> Zu 1) Es gilt
> [mm]Kov[X+Y,U+V]=Kov[X,U]+Kov[X,V]+Kov[Y,U]+Kov[Y,V][/mm]

Hm, dann habe ich:
[mm] Kov(X_1-\overline{X_n},\overline{X_n})=Kov(X_1,\overline{X_n})-Kov(\overline{X_n},\overline{X_n}) [/mm]
[mm] =E(X_1*\overline{X_n})+E(X_1)*E(\overline{X_n})-Var(\overline{X_n}) [/mm]

Aber ohne weitere Info komme ich nun nicht weiter, denn [mm] X_1 [/mm] und [mm] \overline{X_n} [/mm] sind ja nicht unabhängig, oder?

Oder wie könnte es weiter gehen?


>  Zu 2) Die Aufgabenstellung ergibt keinen Sinn.

Hups, ich hab mich verschrieben, vor lauter Kovarianz...
Es ist die Frage nach der Verteilung von [mm] (X_1-\overline{X_n},\overline{X_n}) [/mm]

>  Zu 3) Es kann sein, dass Kovarianz nicht null ist. Dann
> sind sie auch nicht unabhaengig.


Bezug
                        
Bezug
Kovarianz: Antwort
Status: (Antwort) fertig Status 
Datum: 15:46 Do 15.01.2015
Autor: hanspeter.schmid


> Danke erstmal! :-)
>  
> > Zu 1) Es gilt
> > [mm]Kov[X+Y,U+V]=Kov[X,U]+Kov[X,V]+Kov[Y,U]+Kov[Y,V][/mm]
>  
> Hm, dann habe ich:
>  
> [mm]Kov(X_1-\overline{X_n},\overline{X_n})=Kov(X_1,\overline{X_n})-Kov(\overline{X_n},\overline{X_n})[/mm]
>  
> [mm]=E(X_1*\overline{X_n})+E(X_1)*E(\overline{X_n})-Var(\overline{X_n})[/mm]
>  
> Aber ohne weitere Info komme ich nun nicht weiter, denn [mm]X_1[/mm]
> und [mm]\overline{X_n}[/mm] sind ja nicht unabhängig, oder?
>  
> Oder wie könnte es weiter gehen?

Ist schon mal nicht schlecht. Und nun ist ja

[mm]\operatorname{Kov}(X_1,\overline{X_n})=\operatorname{Kov}\left(X_1,\frac{X_1}{n}+\ldots+\frac{X_1}{n}\right)[/mm]

und Du kannst den Tipp nochmal anwenden.

Gruss,
Hanspeter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]