www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikKovarianz, EX
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Kovarianz, EX
Kovarianz, EX < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kovarianz, EX: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:55 Do 27.01.2011
Autor: Fry

Aufgabe
[Dateianhang nicht öffentlich]
[mm] (X_n)_n [/mm] Folge von i.i.d. Zufallsgrößen mit Werten in [-1,1] und [mm] E(X_1)=0 [/mm] und [mm] Y_n=\produkt_{i=1}^{n}X_i [/mm]
a) Zu zeigen: [mm] Var(Y_n) [/mm] existiert
b) Zu zeigen: [mm] Y_n [/mm] paarweise unkorreliert





Hallo zusammen,

zu a)
Stimmt folgende Argumentation?
[mm] X_1,...X_n [/mm] beschränkt => [mm] Y_n [/mm] beschränkt => [mm] Y^{2}_n [/mm] beschränkt=> [mm] E(Y^2) [/mm] existiert => Varianz existiert.

zu b) O.B.d.A sei n<m. Stimmt das dann so?
[mm]Cov(Y_n,Y_m)=E(\produkt_{i=1}^{n} X_i\produkt_{i=1}^{m}X_i)=E(\produkt_{i=1}^{n} X^{2}_i\produkt_{i=n+1}^{m}X_i)= \produkt_{i=1}^{n}E X^{2}_i\produkt_{i=n+1}^{m}EX_i=0[/mm]

Falls ja, wie kann man formal sauber den vorletzten Schritt begründen?
Also ich hab so angefangen:
[mm] $X_1,...,X_n$ [/mm] st.u => [mm] $X^{2}_1,...,X^{2}_n$ [/mm] st.u.

Nun ist zu zeigen, dass [mm] $\produkt_{i=1}^{n} X^{2}_i [/mm] und [mm] \produkt_{i=n+1}^{m}X_i$) [/mm] st.u. sind.
Dazu: [mm] X^{2}_i [/mm] ist unabhängig von [mm] X_j [/mm] für alle [mm] $i\not=j$ [/mm]
Daraus folgt die Behauptung,
denn sei 1 die konstante Zufallsvariable mit Wert 1.
Dann sind (X²_1,...,X²_n,1,...,1) und [mm] (X_{n+1},...,X_m) [/mm] st.u.
(Die Anzahl der Einsen ist = m-n)
Jetzt wende ich auf beide Vektoren die (stetige) Funktion
[mm] f(x_1,...,x_m)=x_1*x_2*...*x_m [/mm] an. Dabei bleibt die Unabhängigkeit erhalten.

Würde mich freuen, wenn ihr mir da helfen könntet!

Liebe Grüße
Fry


Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Kovarianz, EX: Antwort
Status: (Antwort) fertig Status 
Datum: 12:51 Do 27.01.2011
Autor: dormant


> [Dateianhang nicht öffentlich]
>  [mm](X_n)_n[/mm] Folge von i.i.d. Zufallsgrößen mit Werten in
> [-1,1] und [mm]E(X_1)=0[/mm] und [mm]Y_n=\produkt_{i=1}^{n}X_i[/mm]
>  a) Zu zeigen: [mm]Var(Y_n)[/mm] existiert
>  b) Zu zeigen: [mm]Y_n[/mm] paarweise unkorreliert
>  
>
>
>
> Hallo zusammen,
>  
> zu a)
>  Stimmt folgende Argumentation?
>  [mm]X_1,...X_n[/mm] beschränkt => [mm]Y_n[/mm] beschränkt => [mm]Y^{2}_n[/mm]

> beschränkt=> [mm]E(Y^2)[/mm] existiert => Varianz existiert.

Ja. Integrierbare Majorante, z.B. M:=2 const für [mm] X_1, [/mm] also ist [mm] \mathbb{V}[X_1]<\infty [/mm] und somit auch [mm] Y_n. [/mm] Hier musst du auch noch den Erwartungswert von [mm] Y_n [/mm] ausrechnen, da du ihn für b) brauchst.
  

> zu b) O.B.d.A sei n<m. Stimmt das dann so?
>  [mm]Cov(Y_n,Y_m)=E(\produkt_{i=1}^{n} X_i\produkt_{i=1}^{m}X_i)=E(\produkt_{i=1}^{n} X^{2}_i\produkt_{i=n+1}^{m}X_i)= \produkt_{i=1}^{n}E X^{2}_i\produkt_{i=n+1}^{m}EX_i=0[/mm]
>  
> Falls ja, wie kann man formal sauber den vorletzten Schritt
> begründen?

Mit der Unabhängigkeit. Wenn X, Y unabhängig, g messbare Funktion, so sind auch g(X), Y unabhängig. Im Vorletzten Schritt sollst du besser schreiben

... = [mm] \mathbb{V}[Y_n]\mathbb{E}[X_1]^{m-n} [/mm] = [mm] \mathbb{V}[Y_n]*0=0, [/mm]

wegen iid und aus [mm] \mathbb{V}[Y_n]<\infty. [/mm] Man sieht klar wie a) eine Vorbereitung für b) ist.

>  Also ich hab so angefangen:
>  [mm]X_1,...,X_n[/mm] st.u => [mm]X^{2}_1,...,X^{2}_n[/mm] st.u.  

> Nun ist zu zeigen, dass [mm]\produkt_{i=1}^{n} X^{2}_i und \produkt_{i=n+1}^{m}X_i[/mm])
> st.u. sind.
>  Dazu: [mm]X^{2}_i[/mm] ist unabhängig von [mm]X_j[/mm] für alle [mm]i\not=j[/mm]
>  Daraus folgt die Behauptung,
>  denn sei 1 die konstante Zufallsvariable mit Wert 1.
>  Dann sind (X²_1,...,X²_n,1,...,1) und [mm](X_{n+1},...,X_m)[/mm]
> st.u.
>  (Die Anzahl der Einsen ist = m-n)
>  Jetzt wende ich auf beide Vektoren die (stetige) Funktion
>  [mm]f(x_1,...,x_m)=x_1*x_2*...*x_m[/mm] an. Dabei bleibt die
> Unabhängigkeit erhalten.

Überflüssig.
  

> Würde mich freuen, wenn ihr mir da helfen könntet!
>  
> Liebe Grüße
>  Fry
>  

dormant

Bezug
                
Bezug
Kovarianz, EX: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:46 Do 27.01.2011
Autor: Fry


Hey dormant,

vielen Dank für deine Antwort.
Könntest du den zweiten Teil genauer an dem Beispiel ausführen.
Ich sehe nicht, dass das sofort klar ist. Diesen Satz hab ich ja auch übrigens selbst verwendet.

Danke nochmal!
LG
Fry


Bezug
                        
Bezug
Kovarianz, EX: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:04 Do 03.02.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]