www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikKreisintegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Numerik" - Kreisintegral
Kreisintegral < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kreisintegral: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:12 Di 03.04.2007
Autor: Leucram

Aufgabe
Berechne  [mm] I=\integral_{\gamma}^{}{(e^{\alpha*z}/{z^k}) dz} [/mm]

[mm] \alpha>0 [/mm]
k=1,2,3
[mm] \gamma [/mm] ist der positiv durchlaufende einheitskreis

hi, ich hab bei der aufgabe irgendwie probleme.

ich würde mit der isolierten singularität bei z=0 anfangen und die mit dem residuensatz berechnen.

--> [mm] 2*\pi*i*Res(f,z)=2*\pi*i*e^{\alpha*z}/{(z^k)^' } [/mm]   | z=0
--> [mm] =2*\pi*i*e^0 [/mm]

aber das kann irgendwie nicht stimmen, und die isolierte singularität wird bei z=0 wird doch eigentlich nicht von den einheitskreis durchlaufen.
aber ich find keinen anderen ansatz das integral zu lösen :(

vieleicht kann ja einer von euch mir bitte helfen?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.




        
Bezug
Kreisintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 18:39 Di 03.04.2007
Autor: Event_Horizon

Hallo!

Ich denke, du stehst nur etwas auf dem Schlauch:

Das ist vollkommen korrekt, das Residuum eines Einfachpoles ist 1.

UND: Die Residuen geben dir tatsächlich den Wert eines Integrales an, der um sie herumführt. Es ist egal, welchen Weg du nimmst, "brave" Funktionen, wie dein Zähler, haben auf einem geschlossenen Weg immer Integral = 0. Erst der Pol gibt einen anderen Wert.

Der Anteil des Pols wird eben mittels Residuen bestimmt.

Somit ist dein bisher geschriebenes vollkommen korrekt, für die Pole höherer Odnung kommt natürlich ein klein wenig was anderes raus.


Ich meine, das ganze ist doch grade das verrückte an den Residuen!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]