www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Kubische Gleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - Kubische Gleichung
Kubische Gleichung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kubische Gleichung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:00 Mi 07.07.2004
Autor: Erik

Wie kann man bei dieser Gleichung (x-5)(x²+19x+140) die Schnittpunkte berechnen ohne diese Gleichung ableiten zu müssen oder ist das nicht möglich.
Ich habe diese Frage in keinem weiteren Forum gestellt.

        
Bezug
Kubische Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:46 Mi 07.07.2004
Autor: Andi


> Wie kann man bei dieser Gleichung (x-5)(x²+19x+140)

Was du gerade hingeschrieben hast ist keine Gleichung sondern ein Term
ich gehe mal davon aus dass du folgende Funktionsgleichung meinst:
y=(x-5)(x²+19x+140)


> die Schnittpunkte berechnen

Schnittpunkte mit was? mit den Koordinatenachsen oder mit einer anderen Funktion



Bezug
                
Bezug
Kubische Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:00 Mi 07.07.2004
Autor: Mathmark

Vieleicht sind es ja zwei Seiten einer Gleichung:
[mm] $(x-5)=(x^2+19x+140)$ [/mm]
Dann würde es sich um einen Schnittpunkte der beiden Graphen handeln.
Sollte es aber der Term [mm] $y=(x-5)(x^2+19x+140)$ [/mm] sein, so musst Du erst die Klammer ausmultiplizieren und dann die Gleichung $y=0$ setzen.
Dann erhältst Du die Nullstellen der Funktion (Schnittpunkte mit den Achsen ).

MfG   Mathmark

Bezug
                        
Bezug
Kubische Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:09 Mi 07.07.2004
Autor: Marc

Hallo Mathmark und Erik,

>  Sollte es aber der Term [mm]y=(x-5)(x^2+19x+140)[/mm] sein, so
> musst Du erst die Klammer ausmultiplizieren und dann die
> Gleichung [mm]y=0[/mm] setzen.
>  Dann erhältst Du die Nullstellen der Funktion
> (Schnittpunkte mit den Achsen ).

Falls tatsächlich die Nullstellen gesucht sein sollten, dann ist es auf jeden Fall geschickter, nicht vorher auszumultiplizieren, sondern die folgende Eigenschaft der reellen Zahlen auszunutzen ("Nullteilerfreiheit"):

[mm] $a*b=0\gdw\ [/mm] a=0\  [mm] \mbox{ oder }\ [/mm] b=0$

Also hier:

[mm] $0=(x-5)(x^2+19x+140)$ [/mm]
[mm] $\gdw\ [/mm] x-5=0\ \ [mm] \mbox{ oder }\ [/mm] \ [mm] x^2+19x+140=0$ [/mm]

Diese einzelnen Gleichungen sind nun einfacher zu lösen (die linke ist eine lineare, die rechte eine quadratische (p/q-Formel oder quadratische Ergänzung)).

Viele Grüße,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]