www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungKugelgleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra / Vektorrechnung" - Kugelgleichung
Kugelgleichung < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kugelgleichung: Aufgaben
Status: (Frage) beantwortet Status 
Datum: 18:41 So 05.11.2006
Autor: yildi

Aufgabe
Gib die Gleichung einer Kugel K mit folgender Eigenschaft an:

a) K berührt die 2,3-Ebene im Ursprung und hat den Radius r=8.
b) K geht durch den Punkt P(2/3/5) und berührt die 1,2-Ebene im Ursprung.

Moin!

Ich weiss zwar, dass zu einer Kugel die Gleichung x²+y²+z² = r² gehört, aber trotzdem kann ich die Gleichungen nicht aufstellen..

Kann mir jemand helfen ?

Danke!
yildi

        
Bezug
Kugelgleichung: Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:11 So 05.11.2006
Autor: yildi

Ich glaub nun hab ichs doch selber rausbekommen...?

a) K: [mm] x^2+y^2+(z-4)^2 [/mm] = [mm] 8^2 [/mm]

b) K: [mm] x^2+y^2+z^2 [/mm] = 29

Bezug
        
Bezug
Kugelgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:40 So 05.11.2006
Autor: Zwerglein

Hi, yildi,

> a) K berührt die 2,3-Ebene im Ursprung und hat den Radius
> r=8.
>  b) K geht durch den Punkt P(2/3/5) und berührt die
> 1,2-Ebene im Ursprung.
>  Moin!
>  
> Ich weiss zwar, dass zu einer Kugel die Gleichung x²+y²+z²
> = r² gehört,

Das gilt aber nur, wenn der Mittelpunkt der Kugel der Ursprung ist.
Andernfalls gilt:

[mm] (x-x_{M})^{2} [/mm] + [mm] (y-y_{M})^{2} [/mm] + [mm] (z-z_{M})^{2} [/mm] = [mm] r^{2} [/mm]

wobei der Kugelmittelpunkt [mm] M(x_{M} [/mm] ; [mm] y_{M} [/mm] ; [mm] z_{M}) [/mm] ist.

Nun zur ersten Aufgabe:
Wenn die Kugel die yz-Ebene im Ursprung berührt, dann muss der Mittelpunkt auf der x-Achse liegen und zwar (wegen des Radius') in 8 LE Entfernung.
Daher: M(8; 0; 0) oder M(0;0;-8)

Es gibt also 2 Lösungen!
Aber deren Gleichungen schaffst Du nun selbst!

Die zweite Aufgabe fängt ganz analog an:
Wenn die Kugel die xy-Ebene berührt, muss der Mittelpunkt auf der z-Achse liegen. Diesmal ist nur nicht klar, wie weit weg M liegt.
Daher: M(0;0;r)

Also: [mm] x^{2} [/mm] + [mm] y^{2} [/mm] + [mm] (z-r)^{2} [/mm] = [mm] r^{2} [/mm]

Nun musst Du - um r zu berechnen - den Punkt P einsetzen!

Schaffst Du das?

(Ach ja: Die "Lösung" in Deiner Mitteilung passt natürlich nicht so ganz!)

mfG!
Zwerglein



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]