Kugelwelle, Wellengleichung < Physik < Naturwiss. < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:17 Sa 02.11.2013 | Autor: | Lustique |
Aufgabe | Zeigen Sie, dass eine Kugelwelle [mm] $\psi(x,t)=\frac{E_0}{r} \mathrm{e}^{i(\vec k\vec r-\omega t)}$ [/mm] die allgemeine Wellengleichung löst. Benutzen Sie hierfür den Laplace-Operator in Kugelkoordinaten:
[mm] $\mathop{{}\bigtriangleup}\nolimits [/mm] = [mm] \nabla^2 [/mm] = [mm] \frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 \,\frac{\partial}{\partial r} \right) [/mm] + [mm] \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin\theta \frac{\partial}{\partial \theta} \right) [/mm] + [mm] \frac{1}{r^2 \sin^2\theta} \frac{\partial^2}{\partial \varphi^2}$ [/mm] |
Hallo zusammen,
ich habe hier ein kleines notationelles Problem bei einer Physik-Aufgabe (daher auch bei der Physik und nicht bei der mehrdimensionalen Analysis) und denke, dass ich die Aufgabe selbst hinbekommen werde, wenn das geklärt ist. Es ist ja nur eine Rechenaufgabe. Also zu meiner Frage:
Kann mir hier vielleicht jemand mal [mm] $\psi(x,t)=\frac{E_0}{r} \mathrm{e}^{i(\vec k\vec r-\omega t)}$ [/mm] aufdröseln? Ist mit [mm] $\vec [/mm] r$ Folgendes gemeint: [mm] $\vec [/mm] r = [mm] \vektor{x\\y\\z}$? [/mm] Und warum hängt [mm] $\psi$ [/mm] nur von $x$ und $t$ ab, bzw. warum wurden hier die anderen Koordinaten weggelassen? Ist also [mm] $\vec [/mm] r = [mm] \vektor{x\\0\\0}$, [/mm] oder wie? Ich kann mit dieser Notation in der Form so überhaupt nichts anfangen, wenn ich ehrlich bin, und habe deswegen auch keine Ahnung, was bei dieser Aufgabe überhaupt zu tun ist.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:27 Sa 02.11.2013 | Autor: | chrisno |
Ich tippe auf einen Schreibfehler [mm] $\psi(r,t)$ [/mm] heißt das normalerweise, mit dem Betrag von r (und nicht [mm] $\vec{r}$).
[/mm]
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 00:14 So 03.11.2013 | Autor: | Lustique |
Danke ChrisNo! Also [mm] $\psi(r,t)=\dfrac{E_0}{r} \cdot \mathrm{e}^\displaystyle{i(k\cdot r-\omega t)} [/mm] $ mit [mm] $r=\sqrt{x^2+y^2+z^2}$ [/mm] (also keinerlei Vektoren in der Funktion)?
|
|
|
|
|
Hallo!
Genau so würde ich das auch interpretieren. [mm] \vec{k}\vec{r} [/mm] ergibt eine ebene Welle mit Richtung [mm] \vec{k}, [/mm] daher muß es sich eher um ein Produkt aus skalaren kr handeln. Das schöne daran ist, daß du so auch gleich die Darstellung in Kugelkoordinaten hast, wie du sie für die Ableitungen brauchst.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:52 So 03.11.2013 | Autor: | chrisno |
Da steht schon das Skalarprodukt im Exponenten. lokal gibt es immer ein k für die Wellenfront. Da aber k und r die gleiche Richtung haben, reduziert sich das eh auf das Produkt
|
|
|
|
|
hi!
Das mag stimmen, allerdings steht in der Formel ein [mm] \vec{k}, [/mm] und kein [mm] \vec{k}(\vec{r}) [/mm] o.ä. Solange dann keine weiteren Angaben zu [mm] \vec{k} [/mm] erfolgen, würde ich erstmal davon ausgehen, daß [mm] \vec{k} [/mm] eine Konstante ist.
Korrekt müßte es heißen: [mm] \vec{k}(\vec{r})=\frac{k}{|\vec{r}|}*\vec{r} [/mm]
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:49 Di 05.11.2013 | Autor: | Lustique |
Danke für deine Antwort! Die Aufgabe wann dann in ein paar Minuten erledigt.
|
|
|
|