www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenKurvendiskusion mit Exponentia
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Exp- und Log-Funktionen" - Kurvendiskusion mit Exponentia
Kurvendiskusion mit Exponentia < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskusion mit Exponentia: brauch Hilfe
Status: (Frage) beantwortet Status 
Datum: 11:40 Di 14.12.2004
Autor: Dex

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.Hallo Leute, habe voll das Problem??? War jetzt ein monat im Krankenhaus, und muss jetzt URviele Klausuren nachhschreiben (asiLehrer ohne verständnis). Allerdings kann ich es gar nicht, da ich es mir Leider nicht selbst beibringen konnte. Kann mir irgendjemand helfen, und mir eine komplette Kurvendiskusion mit exponentialfunktion (!%"§&$§" versteh auch nichts) aufschreiben und erklären.incl e(euleriscjhe)

        
Bezug
Kurvendiskusion mit Exponentia: Antwort
Status: (Antwort) fertig Status 
Datum: 12:34 Di 14.12.2004
Autor: Karl_Pech

Hallo Dex,


> Kann mir irgendjemand helfen, und mir eine komplette Kurvendiskusion mit exponentialfunktion (!%"§&$§" versteh auch nichts) aufschreiben und erklären.incl e(euleriscjhe)


Die Kurvendiskussion besteht aus folgenden Punkten:


1.) Schnittpunkte des Graphen der Funktion mit der x- und y-Achse bestimmen.

2.) Extremstellen der Funktion bestimmen.

3.) Wendestellen der Funktion bestimmen.

4.) Eventuell Gleichung einer Wendetangente angeben.


zu .1)


[mm] $e^x [/mm] = 0$ // Damit kriegen wir eventuelle Schnittpunkte mit der x-Achse

Allerdings ist diese Gleichung hier nicht lösbar, denn [mm] $e^0 [/mm] = 1$ und wenn wir etwas anderes für x einsetzen, so kommt auch immer etwas ungleich 0 raus. [mm] $e^x$ [/mm] besitzt also keine Nullstellen.


Als nächstes die Schnittpunkte mit der y-Achse: [mm] $e^0 [/mm] = 1$. Damit schneidet [mm] $e^x$ [/mm] die y-Achse bei (0,1).


zu 2.)


Es gilt:


$f'(x) = f''(x) = f'''(x) = f''''(x) = f'''''(x) = ... = [mm] e^x$. [/mm]


Aus den oberen Betrachtungen wissen wir, daß [mm] $e^x [/mm] = 0$ keine Lösung hat, womit es hier auch keine Extremstellen oder Wendestellen geben kann.


Damit entfällt auch Aufgabe 4.).



Viele Grüße
Karl



Bezug
        
Bezug
Kurvendiskusion mit Exponentia: Beispiel-Funktion
Status: (Antwort) fertig Status 
Datum: 13:10 Di 14.12.2004
Autor: Loddar

Hallo Dex,

Karl_Pech hat Dir ja bereits einige allgemeine Dinge für die Funktion $y = [mm] e^x$ [/mm] erläutert.

Rechne doch mal eine Kurvendiskussion durch für folgende Funktion:
$f(x) = x * [mm] e^x$ [/mm]

Diese Aufgabe geht ähnlich, wie oben erläutert - übt aber auch ganz gut (u.a. auch ableitungsregeln etc.)

Dann poste hier Deine Ergebnisse und wir können Dir dann genau sagen wo's hängt ...

Grüße Loddar

Bezug
        
Bezug
Kurvendiskusion mit Exponentia: Antwort
Status: (Antwort) fertig Status 
Datum: 16:20 Di 14.12.2004
Autor: Daox

Hi!
Du hast es wohl nicht leicht zur Zeit...
Nun, du hast ja auch nach generellen Exponentialfunktionen gefragt:
Für die Ableitungen mussm na sie zu e-Funktionen umformen:
[mm] y=a^{x} [/mm]
Da der Natürliche Log. ln die Umkehrung der e-Funktion ist, ist [mm] e^{ln1}=1 [/mm] und [mm] ln(e^{1}=1, [/mm] hebt sich also weg, genauso verhält es sich mit x² und [mm] log_{2}. [/mm]
Also ist [mm] y=a^{x}=e^{lna}, [/mm] was sich wieder leicht auf und ableiten lässt mithilfe der Kettenregel.

Ich habe meine Notzizen, mit denen ich für die Arbeiten gelernt habe eingescannt, könnte für dich vielleicht hilfreich sein, da es ja auch Erklärungen enthält, sowie Beispielsvorgehensweisen.
Ich weiß nicht, wie man hier Files anhängt, ich hab erstmal auf meinen Schulwebspace hochgeladen: etwa 760kb

[]http://mandy.homedns.org/~nikita.krutov/mathe/exponentialfunktionen.zip

Sag am besten Bescheid, wenn du's hast, sollte nicht zu lange dort hochgeladen bleiben; wäre auch gut, wenn das jemand eventuel auf eventuelle Fehler durchsehen würde...

Ich hoffe es hilft.

Ach übrigens, dieser Witz ist toller:
Die mathematischen Funktionen machen eine Party. Sinus tanzt ausgelassen auf der Tanzfläche und auch Cosinus ist gut drauf, nur die e-Funktion steht etwas traurig in der Ecke. Als der Logarithmus vorbeikommt, fragt er:" Was ist denn los mit dir, gefällt dir die Party nicht?"
Darauf die e-Funktion: " Ach, ich kann mich irgendwie nicht richtig integrieren."

http://www.familie-ahlers.de/wissenschaftliche_witze/mathematiker_und_physiker_witze.html

Die ganze Seite ist toll, vor allem die Genesis der Mathematik!!!

Also viel Glück!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]