www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTrigonometrische FunktionenKurvendiskussion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Trigonometrische Funktionen" - Kurvendiskussion
Kurvendiskussion < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: Tipp, Korrektur
Status: (Frage) beantwortet Status 
Datum: 21:08 Di 10.02.2015
Autor: Lucas95

Aufgabe
Gegeben Sind die Funktionen
g(x)= [mm] 2*sin(-\bruch{\pi}{2}*x) [/mm] + 3
h(x)= [mm] -4*sin(\bruch{\pi}{4}*x)+3 [/mm]
a) Ermitteln Sie jeweils die kleinste Periode von g(x), von h(x) und von f(x)=g(x)+h(x)!
b) Ermitteln Sie die Größe des Schnittwinkels der Bilder von g(x) und h(x) im Schnittpunkt beider Kurven auf der y-Achse!
c) Ab welcher Stelle x0 (x0>0) gilt für den Anstieg mg der Kurve g(x) zum ersten mal rechts von der y-Achse die Ungleichung mg>1?
d) Die von den Schaubildern der beiden Kurven im Intervall von Null bis Vier eingeschlossene Fläche A soll berechnet werden. Bestimmen Sie den Inhalt dieser Fläche, wenn eine Koordinateneinheit einem Meter entspricht!
e) Es wird behauptet, dass eine Gerade durch den Hochpunkt von g(x) und den Tiefpunkt  von h(x) die oben beschriebene Fläche halbiert!Prüfen Sie die Wahrheit dieser Behauptung!

Liebe community,
ich wäre euch für recht schnelle Antworten sehr hilfreich!! Ich bin nicht ganz verzweifelt, will aber auf Nummer sicher gehen..

zu a) Da habe ich leider keine Ahnung, wir haben so etwas noch nie im Unterricht behandelt.. /: Habt ihr einen Tipp für mich?

b) beide Funktionen gleichsetzten --> gemeinsamer Schnittpunkt S(0;3)
dann jeweils die 0 in die erste Ableitung von g(x) und h(x) einsetzen.
dann bekommt man die Winkel von
g(x) --> =72,3432°
h(x)--> =-72,3432°
Und der Schnittwinkel der beiden Funktionen ist dann
180-72,3432°-72,3432° = 35, 3136° Stimmt das?

c) d) und e) folgen gleich

        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:14 Di 10.02.2015
Autor: abakus

"Das haben wir noch nie gemacht" höre ich häufig, und meistens stimmt es nicht.
Nur so viel:
Die Funktion y=sin(b*x) hat die kleinste Periode [mm]\frac{2\pi}{b}[/mm].

Für den Fall, dass b negativ ist: 
sin(-x)=-sin(x).

Dein angegebener Schnittwinkel stinnt.

Bezug
                
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:22 Di 10.02.2015
Autor: Lucas95

Leider stimmt es. Ich sitze in der ersten Reihe und schreibe fast alles mit.. /:
Zu c) weiß ich auch nicht so richtig weiter. Man müsste hier natürlich mit der ersten Ableitung arbeiten.
das bedeutet g1(x)<1 sein. Aber so richtig weiß ich nicht weiter.

d) hier habe ich das Integral von 0 bis 4 gebildet unter g(x)-h(x) da g(x) über h(x) liegt. A müsste dann ca. 0,877m² sein. ?

Bezug
                        
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:30 Di 10.02.2015
Autor: Lucas95

e) hier müsste man ja erstmal die Gerade berechnen, die durch die beiden Punkte geht. Das wäre dann mit m=-6 die gerade p(x)=-6*x+11
Und nun? Jetzt müsste ich ja zweimal eine Fläche ausrechnen und schauen, ob beide übereinstimmen, aber was nehme ich als obere bzw. als untere Grenze?

Bezug
                                
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:38 Di 10.02.2015
Autor: leduart

Hallo
die Gerade geht doch durch die Punkte (2,-4) und  (3,2( da habe ich eine andere Gleichung.
plotte doch mal die 2 Funktionen
Gruß leduart

Bezug
                                        
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:40 Di 10.02.2015
Autor: Lucas95

Also der Hochpunkt von g(x) liegt bei (1;5)
und der Tiefpunkt von h(x) bei (2;-1)
aus diesen beiden Punkten kann man m errechnen m=-6 und dann in die normale Form p(x)=m*x+n einsetzen.
daraus folgt dann p(x)=-6*x+11.
Und das müsste eigentlich auch stimmen, habe es mir mit dem CAS aufgezeichnet. Aber wie kann ich nun Aufgabe e) rechnen?

Bezug
                                                
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:51 Di 10.02.2015
Autor: leduart

Hallo
mein Hochpunkt liegt bei (3,5) der Tiefpunkt bei (2,-1)
siehe plot
[Dateianhang nicht öffentlich]
Gruß leduart

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                                                        
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:56 Di 10.02.2015
Autor: Lucas95

Der Hochpunkt liegt bei (1,5)

Bezug
                                                                
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:59 Di 10.02.2015
Autor: leduart

Hallo
siehe meine andere Antwort, in der letzten hatte ich die +3 weggelassen
Gruss leduart

Bezug
                
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:35 Di 10.02.2015
Autor: Lucas95

Somit wäre die kleinste Periode für g(x) p=4 und für h(x) p=8. Stimmt das?

Bezug
                        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:43 Di 10.02.2015
Autor: abakus


> Somit wäre die kleinste Periode für g(x) p=4 und für
> h(x) p=8. Stimmt das?

Ja, das stimmt. 
(Ich kann mir vorstellen, dass ihr das nicht im Unterricht dieser Klasse hattet. Es ist Stoff der Klasse 10.)
Was meinst du mit "m*g"?
Wenn es heißen sollte "Produkt des Anstiegs von g(x) mit dem Funktionswert g(x)", dann musst du eben g(x) mit der Ableitung davon multiplizieren.

Bezug
                                
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:45 Di 10.02.2015
Autor: Lucas95

ich glaube das heißt einfach m von g(x) also der Anstieg der Funktion g(x).
Wie errechne ich die Periodenlänge von g(x) + h(x) ?? Einfach 4+8=12?

Bezug
                                        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:07 Di 10.02.2015
Autor: leduart

Hallo
wenn sich was nach 4 wiederholt, dann auch nach 8 also gemeinsam 8
allgemein das kgV der 2 Perioden überlege warum!
Gruß leduart

Bezug
                                                
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:11 Di 10.02.2015
Autor: Lucas95

Hat eventuell noch jemand einen Tipp für e) und c) ? /:

Bezug
                                                        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:06 Di 10.02.2015
Autor: leduart

Hallo
g' berechnen, dann die  erste Stelle mit g'=1 suchen, mit plot kontrollieren
zu e) die Gerade ausrechnen und einzeichnen dann die entsprechenden Integralstücke ausrechnen. ob es 1/2 ist brauchst du nur die eine Hälfte.
Gruß leduart

Bezug
                                                                
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:15 Di 10.02.2015
Autor: Lucas95

Da bekomme ich nun zu c heraus:
x1=0,794 x2=3,206. x2 entfällt, da nur das erste mal gesucht wird
--> ab der Stelle x0=0,794>0 gilt für den Anstieg mg der Kurve g(x) zum ersten Mal rechts von der y-Achse die Ungleichung mg<1.
Stimmt das?

Bezug
                                                                        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:32 Di 10.02.2015
Autor: leduart

richtig

Bezug
                                                
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:32 Di 10.02.2015
Autor: Lucas95

Es kommt einmal -72,3432° heraus und einmal +72,3432°
man muss doch rechnen 180-72,3432-72,3432 oder nicht?

Bezug
                                                        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:42 Di 10.02.2015
Autor: leduart

Hallo
Ich habe für beide Kurven Steigung [mm] -\pi [/mm]  raus und damit -72,..° Was ist denn deine Ableitung?
und plotte doch mal die Kurven! ich mach so was mit geogebra umsonst und sehr gut.
Gruß leduart

Bezug
                                                                
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:49 Di 10.02.2015
Autor: Lucas95

Ich habe es nochmal nachgerechnet. Bei der ersten Ableitung von g(x) kommt definitiv +pi heraus und bei der ersten Ableitung von h(x) definitiv -pi.
Das stimmt doch?!

Bezug
                                                                        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:01 Di 10.02.2015
Autor: leduart

Hallo schreib mal deine allgemeine Ableitung für g hin.
Gruß leduart

Bezug
                                                                                
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:06 Di 10.02.2015
Autor: Lucas95

Ableitung für g(x)= [mm] \pi*cos(\bruch{\pi*x}{2}) [/mm]

Tipps für e und c?
Der Flächeninhalt bei d müsste 10,1859 sein, stimmt das?

Bezug
                                                                                        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:15 Di 10.02.2015
Autor: leduart

[mm] g(x)=2*sin(-\pi/2*x)+3 [/mm]
[mm] g'(x)=-pi/2*2*cos(-\pi/2*x) [/mm]
oder war im ersten post ein Druckfehler?
Gru0 leduart

Bezug
                                                                                                
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:17 Di 10.02.2015
Autor: Lucas95

g(x) lautet: 2*sin(pi/2*x) + 3
g1(x) lautet: pi*cos(pi/2*x)

Bezug
                                                                                                        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:31 Di 10.02.2015
Autor: leduart

Hallo
alle meine antworten bezogen sich auf die Aufgaben im ersten post. Wo hast du die korrigiert?
Gruß leduart

Bezug
                                                                                                                
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:35 Di 10.02.2015
Autor: Lucas95

Mist. Eventuell habe ich mich irgendwo vertippt. Stimmt mein Schnittwinkel von 35,3136°?

Bezug
                                                                                                                        
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:04 Mi 11.02.2015
Autor: Lucas95

Und wie kann ich nun e) ausrechnen.
Ich habe die Gerade mit y=-6*x+11. Aber wie berechne ich nun die einzelnen Teilflächen?

Bezug
                                                                                                                                
Bezug
Kurvendiskussion: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 06:51 Mi 11.02.2015
Autor: Lucas95

Liebe Leute,
ich brauche bitte bitte dringend eure Hilfe.

b) Ermitteln Sie die Größe des Schnittwinkels der BILDER  von g(x) und h(x) im Schnittpunkt beider Kurven auf der y-Achse!
e) Es wird behauptet, dass eine Gerade durch den Hochpunkt von g(x) und den Tiefpunkt  von h(x) die oben beschriebene Fläche halbiert!PRÜFEN  Sie die Wahrheit dieser Behauptung!
Die GLeichungen lauten:

g(x)= [mm] 2*sin(\bruch{pi}{2}*x)+ [/mm] 3

h(x)=  [mm] -4*sin(\bruch{pi}{4}*x)+3 [/mm]


Diese Aufgaben sind jetzt noch offen.
b) Stimmt der Schnittwinkel von 35,3136°?
e) meine Geradengleichung lautet y=-6*x+11, aber wie kann ich nun die Flächenstücke ausrechnen, weil ich brauche ja eine obere und eine untere Grenze für das Integral, aber die Gerade verläuft ja leicht schräg?
Bitte helft mir!

Bezug
                                                                                                                                
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 07:55 Mi 11.02.2015
Autor: angela.h.b.


> Und wie kann ich nun e) ausrechnen.
>  Ich habe die Gerade mit y=-6*x+11.

Hallo,

Du arbeitest im Gegensatz zum Eingangspost mit [mm] g(x)=2*sin(\bruch{\pi}{2}*x)+3, [/mm]
und ich beziehe mich jetzt auch auf diese Funktion.



>  Aber wie berechne ich
> nun die einzelnen Teilflächen?  

Mit Integralen.

Linkee Teilfläche:

[mm] A_l=\integral_0^1(g(x)-h(x))dx +\integral_1^2(-6x+11-h(x))dx, [/mm]

denn zwischen 0 und 1 wird die Flache oben duch g(x) und unten duch h(x) begrenzt,
zwischen 1 und 2 wird sie oben durch die Gerade und unten duch h(x) begrenzt.

Die rechte Fläche bekommst Du dann selber hin.

LG Angela



Bezug
                                                                                                                        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 07:48 Mi 11.02.2015
Autor: angela.h.b.


> Mist. Eventuell habe ich mich irgendwo vertippt. Stimmt
> mein Schnittwinkel von 35,3136°?

Hallo,

es gibt etwas Chaos:

im Eingangspost lautet die erste Funktion  [mm] g(x)=2*sin(\red{-}\bruch{\pi}{2}*x)+3, [/mm]

und unterwegs wird sie zu [mm] g(x)=2*sin(\bruch{\pi}{2}*x)+3. [/mm]


Um über die Richtigkeit von Ergebnissen zu entscheiden, muß man ja die Funktion kennen..

Falls mit der zweiten Funktion gearbeitet werden soll, stimmt der Winkel.


LG Angela



Bezug
                
Bezug
Kurvendiskussion: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 22:21 Di 10.02.2015
Autor: leduart

Hallo
der Schnittwinkel stimmt nicht, er ist 0°
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]