www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenKurvendiskussion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - Kurvendiskussion
Kurvendiskussion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: Wendepunkt etc
Status: (Frage) beantwortet Status 
Datum: 16:41 Di 06.02.2007
Autor: KaiTracid

Aufgabe
Diskutieren sie die Funktion : f(x) = [mm] \bruch{x²-2x+2}{x²+1}. [/mm]

Diskussionspunkte: Definitionsbereich, Nullstellen,,Polstellen, Verhalten für /x/ -> [mm] \infty, [/mm] Extremstellen, Art möglicher Extremstellen, Wendepunkt.

Also ich habe folgendes raus:

Definitionsbereich: x [mm] \in \IR [/mm]

Nullstellen: gibt es nicht

Polstellen:keine

/x/-> [mm] \infty: [/mm] f(x) ->1

Extremstellen:

Ableitung:
f´(x) = [mm] \bruch{2x²-2x-2}{(x²+1)²} [/mm]
[mm] f´´(x)=\bruch{-4x^5 + 6x^4 + 8x^3 + 4x² + 12x -2}{(x²+1)^4} [/mm]

TP:  0.38
HP: 2.26

Mein Problem liegt nun beim Wendepunkt!
[mm] -4x^5 [/mm] + [mm] 6x^4 [/mm] + [mm] 8x^3 [/mm] + 4x² + 12x -2 =0
diese gleichung muss ich doch auf x auflösen! nur weis ich nicht wie ich des machen soll?! kann mir da jemand helfen und vllt auch sagen ob der rest so stimmt?

Vielen Dank!

        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:01 Di 06.02.2007
Autor: Stefan-auchLotti


> Diskutieren sie die Funktion : f(x) =
> [mm]\bruch{x²-2x+2}{x²+1}.[/mm]
>  
> Diskussionspunkte: Definitionsbereich,
> Nullstellen,,Polstellen, Verhalten für /x/ -> [mm]\infty,[/mm]
> Extremstellen, Art möglicher Extremstellen, Wendepunkt.
>  Also ich habe folgendes raus:
>  

[mm] $\bffamily \text{Hi.}$ [/mm]

> Definitionsbereich: x [mm]\in \IR[/mm]
>  

[ok]

> Nullstellen: gibt es nicht
>  

[ok]

> Polstellen:keine
>  

[ok]

> /x/-> [mm]\infty:[/mm] f(x) ->1
>  

[ok]

> Extremstellen:
>
> Ableitung:
>  f´(x) = [mm]\bruch{2x²-2x-2}{(x²+1)²}[/mm]

[ok]

>  [mm]f´´(x)=\bruch{-4x^5 + 6x^4 + 8x^3 + 4x² + 12x -2}{(x²+1)^4}[/mm]
>  

[mm] $\bffamily \text{Du kannst dir eine Menge Ausmultiplizierungsarbeit ersparen, indem du, nachdem du die Quotientenregel ange-}$ [/mm]

[mm] $\bffamily \text{wendet hast, guckst, ob du was wegkürzen kannst.}$ [/mm]

> TP:  0.38
>  HP: 2.26
>  

[notok]

[mm] $\bffamily \text{Da hast du dich bei der }p\text{-}q\text{-Formel/quadratischen Ergänzung wohl ein wenig vertan. Überprüf' noch mal deine Ergebnisse!}$ [/mm]

> Mein Problem liegt nun beim Wendepunkt!
>  [mm]-4x^5[/mm] + [mm]6x^4[/mm] + [mm]8x^3[/mm] + 4x² + 12x -2 =0
>  diese gleichung muss ich doch auf x auflösen! nur weis ich
> nicht wie ich des machen soll?! kann mir da jemand helfen
> und vllt auch sagen ob der rest so stimmt?
>  

[mm] $\bffamily \text{Stichwort: cardanische Formel.}$ [/mm]

[mm] $\bffamily \text{Hier die Ergebnisse (doch ich würde trotzdem versuchen, sie selbst noch mal zu errechnen, als Kontrolle!):}$ [/mm]

[mm] $\bffamily x_{1}=\wurzel{5}*\cos\left(\bruch{\operatorname{arctan}\left(\bruch{1}{3}\right)}{3}+\bruch{\pi}{12}\right)+\bruch{1}{2}\approx [/mm] 0{,}1557915668$

[mm] $\bffamily \vee$ [/mm]

[mm] $\bffamily x_{2}=-\wurzel{5}*\sin\left(\bruch{\operatorname{arctan}\left(\bruch{1}{3}\right)}{3}+\bruch{\pi}{4}\right)+\bruch{1}{2}\approx [/mm] -1{,}241306459$

[mm] $\bffamily \vee$ [/mm]

[mm] $\bffamily x_{3}=-\wurzel{5}*\sin\left(\bruch{\operatorname{arctan}\left(\bruch{1}{2}\right)}{3}\right)+\bruch{1}{2}\approx [/mm] 2{,}585514892$

> Vielen Dank!

[mm] $\bffamily \text{Grüße, Stefan.}$ [/mm]

[mm] $\bffamily \text{PS: Die Formel von Cardano kannst du natürlich nur benutzen, wenn du auf meine vorhin genannte Kürzung eingehst, da sich nur dann eine Gleichung 3. Grades ergibt.}$[/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]