www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungKurvendiskussion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differenzialrechnung" - Kurvendiskussion
Kurvendiskussion < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: Korrektur
Status: (Frage) beantwortet Status 
Datum: 16:48 So 06.01.2008
Autor: Mia_Marie

Aufgabe
Gegeben ist die Funktion [mm] y=x^4/8+x^3-2x^2+4. [/mm] Bestimmen Sie die Ableitungen und berechnen Sie den Extrempunkt und den Wendepunkt sowie die Wendetangente.

Hab alles abgeleitet und ausgerechnet. Aber ich vermute,dass ich habe einen Fehler, aber ich komme nicht darauf. Könnte jemand die Kurvendiskussion durchrechnen, ob ich wirklich einen Fehler habe?

Ableitungen:
[mm] y'=4x^3/8+3x^2-4x [/mm]
[mm] y''=12x^2/8+6x-4 [/mm]

Nullstelle: x=-1,15
Extrempunkt: x=-7 (y' Null setzen)
Tiefpunkt: 27,5
Wendepunkt: x=0,6
                      y=3,5
Wendetangente: y=(-1,22)x+4,23

        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:15 So 06.01.2008
Autor: M.Rex

Hallo

Wenn du in den Ableitungen die Brüche kürzt, wirds einfacher:

also:

[mm] f(x)=\bruch{x^{4}}{8}+x³-2x²+4 [/mm]
[mm] f'(x)=\bruch{4x^{3}}{8}+3x²-4x=\bruch{x^{3}}{2}+3x²-4x [/mm]
[mm] f''(x)=\bruch{3x^{2}}{2}+6x-4 [/mm]
Und für die hinreichende Bedingung für den Wendepunkt [mm] (f'''(x_{w})\ne0) [/mm] würde ich auch die dritte Ableitung noch bilden.
[mm] f'''(x)=\bruch{2*3x}{2}+6=3x+6 [/mm]

Zum Extrempunkt [mm] E(x_{e}/f(x_{e})) [/mm] (oder besser, den möglichen)
Notwendig:
[mm] f'(x_{e})=0 [/mm]
[mm] \Rightarrow \bruch{x^{3}}{2}+3x²-4x=0 [/mm]
[mm] \gdw \left(\bruch{x^{2}}{2}+3x-4\right)x=0 [/mm]
[mm] \Rightarrow x^{2}+6x-8=0 [/mm] oder x=0
[mm] \Rightarrow x_{e_{1;2}}=-3\pm\wurzel{17}, x_{e_{3}}=0, [/mm]

Damit schreibe mal deine drei Extrempunkte auf, mit dem Zusatz, Hoch- oder Tiefpunkt. (und y-Koordinate)

Zum Wendepunkt:
Auch hier musst du die zweite Koordinate noch bestimmen.
[mm] f''(x_{w})=0 [/mm] (Notw. Bed.)
[mm] \Rightarrow \bruch{3x^{2}}{2}+6x-4=0 [/mm]
[mm] \gdw x²+4x-\bruch{8}{3}=0 [/mm]
[mm] \Rightarrow x_{w_{1;2}}=-2\pm\wurzel{2+\bruch{8}{3}}=-2\pm\wurzel{\bruch{20}{3}} [/mm]

Hinreichende Bed.
[mm] f'''(2\pm\wurzel{\bruch{20}{3}})\ne0 [/mm] (Wahr)

Somit sind deine Wendepunkte

[mm] W_{1}=(-2+\wurzel{\bruch{20}{3}};f(-2+\wurzel{\bruch{20}{3}})) [/mm]
[mm] W_{2}=(-2-\wurzel{\bruch{20}{3}};f(2-\wurzel{\bruch{20}{3}})) [/mm]

Berechne damit mal deine Tangente, und schreibe den Weg hier rein, dann prüfen wir, ob es passt.

Marius

Bezug
                
Bezug
Kurvendiskussion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:31 So 06.01.2008
Autor: Mia_Marie

Dank fürs korrigieren! Im Prinzip ist alles falsch nur die Nullstelle hat gepasst.

Mit deiner Hilfe hab ich die ganze Aufgabe nochmal neu gerechnet.

Bei den Wendepunkten hab ich den x1-Wert : 0,58 und den y1-Wert : 3,53
Bei x2 : -4,58 und y2 : -79,02

Wendetangente:
y=kx+d
3,53=k*0,58+d -> [mm] k=y'(0,58)=0,58^3/2+3*(0,58)^2-4*0,58 [/mm] = -1,23
4,23 = d

y=-1,23x+4,23


y=kx+d
-79,02=k*(-4,58)+d -> k=y'(-79,02) = 228290,37
1045490,87 = d

y=228290,37x+1045490,87


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]