www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenKurvendiskussion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Exp- und Log-Funktionen" - Kurvendiskussion
Kurvendiskussion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: Korrektur
Status: (Frage) beantwortet Status 
Datum: 20:47 Do 10.01.2008
Autor: defjam123

Hey Leute!

Ich soll ne Krvendiskussion zur Funktion: [mm] h(t)=\bruch{z}{c}(1-e^{-\bruch{c}{Q}t}) [/mm] machen.

Hab folgende Ergebnisse:

Symmentrie:keine
Verhalten: [mm] f(x)\mapsto+0 [/mm]
             [mm] x\mapsto\infty [/mm]
             t>0

           [mm] f(x)\mapsto-0 [/mm]
             [mm] x\mapsto-\infty [/mm]
             t>0

Nullstellen:Keine
Extrema:keine
Wendestelle:keine

ist das richtig?

Gruss

        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:10 Do 10.01.2008
Autor: Adamantin

Bis auf das Verhalten für [mm] +-\infty [/mm] scheinen deine Überlegungen zu stimmen.
Für das Verhalten gegen +- Unendlich habe ich:

[mm] \limes_{t\rightarrow\infty}\bruch{z}{c}(1-e^{-\bruch{c}{Q}t}) [/mm] =

[mm] \limes_{t\rightarrow\infty}\bruch{z}{c}-\bruch{z}{c}*e^{-\bruch{c}{Q}t} [/mm] =

[mm] \limes_{t\rightarrow\infty}\bruch{z}{c} [/mm] - [mm] \limes_{t\rightarrow\infty}\bruch{z}{c}*e^{-\bruch{c}{Q}t} [/mm] =

[mm] \bruch{z}{c} [/mm] - [mm] \limes_{t\rightarrow\infty}\bruch{z}{c}*e^{-\bruch{c}{Q}t} [/mm] =

[mm] \bruch{z}{c} [/mm] - 0  für t>0, da [mm] e^{-t}=\bruch{1}{e^t} [/mm] für [mm] +\infty [/mm] = 0

entsprechend für [mm] -\infty [/mm]

[mm] \bruch{z}{c} [/mm] - [mm] \limes_{t\rightarrow-\infty}\bruch{z}{c}*e^{-\bruch{c}{Q}t} [/mm] =

[mm] \bruch{z}{c} [/mm] - [mm] \infty [/mm] = [mm] -\infty [/mm]


Bezug
                
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:56 Do 10.01.2008
Autor: defjam123

danke dir!

versteh diese schreibweise für den verhalten nicht so. Wie würde es in meiner schreibweise aussehen die ich oen benutzt hab. Könnte mir jemand die limes schreibweise erklären?

Gruss

Bezug
                        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:12 Do 10.01.2008
Autor: Adamantin

Also dann versuche ich es dir einmal zu erklären :)

[mm] \limes_{x\rightarrow\infty}f(x) [/mm] ist eine Schreibweise, die besagt, dass man den Grenzwert der Funktion f bilden möchte, und zwar für x gegen [mm] \infty, [/mm] also [mm] x\to\infty [/mm] (nicht [mm] \mapsto [/mm] benutzen, das ist eine Funktionsvorschrift und bedeutet etwas anderes)

Der limes besagt also nichts anderes als, bilde den Grenzwert von deinem Argument und zwar für die Grenze, die unten angegeben ist, also z.B. für x gegen [mm] \infty [/mm]

Beispiele:

[mm] \limes_{x\rightarrow\infty}x [/mm] = [mm] \infty [/mm]

Also der Wert, wenn man für x einen unendlich großen Wert einsetzen würde, ist unendlich

[mm] \limes_{x\rightarrow\infty}-x [/mm] = [mm] -\infty [/mm]

[mm] \limes_{n\rightarrow\infty}1/n [/mm] = 0

Natürlich muss das Argument nicht immer x sein, es kann auch n oder t sein, in deinem Fall war die Funktion ja h(t)

Wolltest du das ungefähr wissen?
In meinem vorherigen Beitrag habe ich eben den Grenzwert der Funktion h(t) gebildet, indem ich für den Wert t sozusagen [mm] \infty [/mm] eingesetzt habe. Da [mm] e^\infty [/mm] = [mm] \infty [/mm] ist, ergibt sich dann eben der 2. Fall usw.

Allgemein kannst du auch immer Testwerte einsetzen, so mach ich es, also z.B. kannst du für deine Funktion setzen:
c=1, z=2, q=3 t=beliebig

[mm] h(t)=\bruch{1}{2}*(1-e^{-\bruch{2}{3}*t}) [/mm]

Nun kannst du das in den Taschenrechner eingeben und für t mal einen sehr großen Wert wie 99 einsetzen und du wirst sehen, dass 1/2 rauskommt, nichts anderes ist eben die Schreibweise [mm] \limes_{t\rightarrow\infty} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]