www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenKurvendiskussion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionen" - Kurvendiskussion
Kurvendiskussion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:29 Di 19.02.2008
Autor: eva_sp

Aufgabe
f(x) = x [mm] \wurzel{|x²-36|} [/mm]

Hallo hab ein ziemliches Problem mit der Funktion.

Also erst ma das, was ich habe:

f(x) = x [mm] \wurzel{|x²-36|} [/mm] = [mm] \begin{cases} x \wurzel{x²-36}& \mbox{falls } x \mbox{e} ]-\infty;-6] \cup [6;\infty[ \\ x \wurzel{36-x²}& \mbox{falls } x \mbox{e} [-6;6] \end{cases} [/mm]

1. Ableitungen:

f'(x) = [mm] \begin{cases} \bruch{2x²-36}{\wurzel{x²-36}} & \mbox{falls } x \mbox{e} ]-\infty;-6[ \cup ]6;\infty[ \\ \bruch{36- 2x²}{\wurzel{36-x²}} & \mbox{falls } x \mbox{e} ]-6;6[ \end{cases} [/mm]

f''(x) = [mm] \begin{cases} \bruch{2x³-108x}{\wurzel{(x²-36)³}} & \mbox{falls } x \mbox{e} ]-\infty;-6[ \cup ]6;\infty[ \\ \bruch{108- 2x³}{\wurzel{(36-x²)³}} & \mbox{falls } x \mbox{e} ]-6;6[ \end{cases} [/mm]

2. Definitionsmengen:
für f(x) = [mm] \IR; [/mm] für f'(x); f''(x) = [mm] \IR \setminus [/mm] {-6;6}

3. Symmetrie:
f(-x) = -f(x) -> symmetrisch zu U (0/0)

4. Stetigkeit/Polstellen:
stetig auf [mm] \IR; [/mm] keine Polstellen

5. Verhalten für betraglich große x-Werte:
[mm] \limes_{x\rightarrow\pm\infty} [/mm] f(x) = 0   (wie komme ich auf 0??) -> x-Achse ist Aysmptote

6. Schnittpunkte mit beiden Achsen:
X1 (0/0); X2 (-6/0); X3 (6/0)
Y (0/0)

7. Punkte mit horizontaler Tangente:
f'(x)=0: 2x²-36=0 -> [mm] x_{1/2} [/mm] = [mm] \pm \wurzel{18} [/mm]

Entscheidung: (da [mm] \wurzel{18} [/mm] für den 2. Fall definiert ist, setzte ich das in den 2. Fall, richtig?)
[mm] f''(\wurzel{18})= \bruch{108\wurzel{18} - 36}{\wurzel{18³}} [/mm] = 4 >0 -> Tiefpunkt an [mm] \wurzel{18} [/mm]         (es muss doch ein Hochpunkt für [mm] +\wurzel{18} [/mm] rauskommen, wenn ich das in f(x) einsetze, bekomme ich den Hochpunkt an [mm] (\wurzel{18}/18), [/mm] was mache ich falsch?) dementsprechend bekomme ich für [mm] -\wurzel{18} [/mm] einen Hochpunkt, was eigentlich ein Tiefpunkt sein müsste.

8. Punkte mit vertikaler Tangente:
V1(-6/0); V2(6;0)

9. Wendepunkte:
f''(x)=0: x(108-2x²)=0 -> [mm] x_{1}=0; x_{2/3}=\pm \wurzel{54} [/mm]
wie prüfe ich, ob an [mm] x_{2/3} [/mm] wirklich ein Wendepunkt liegt? Gibt es eine Möglichkeit das zu prüfen, ohne die 3. Ableitung der Funktion?

10. Wertemenge:
Müsste laut Hoch- /Tiefpunkt bei [-18;18] liegen


Wäre sehr nett, wenn jemand meine Angaben überprüfen könnte und mir bei evtl. Fehlern helfen kann!

LG Eva

        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 01:45 Di 19.02.2008
Autor: Teufel

Hallo!

Bei 5. ist der Limes für [mm] |x|->\infty [/mm] nicht 0, sondern [mm] +\infty [/mm] (->) bzw. [mm] -\infty [/mm] (<;-), da der Radikand für betragsmäßig große x auch immer größer wird und damit die gesamte Wurzel.

7.
Es kommt mir so vor, als wenn die 2. Ableitung nicht ganz stimmen würde! Die 1. ist aber noch richtig.
Also ich meine die 2. Ableitung der Teilfunkton, der sich von -6 bis 6 erstreckt. Wenn du eine Klammer um den Zähler schreibst und ein - vorsetzt, stimmt es (und hinter die 108 noch ein x setzt).

9.
Hier kannst du auch mit dem Vorzeichenwechselkriterium argumentieren!

Und 10. verändert sich wegen neuer Erkenntnisse aus 5.
(Ansonsten wär es natürlich richtig).


Bezug
                
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:06 Di 19.02.2008
Autor: eva_sp

Hallo Teufel,

danke für die Antwort. Was ist denn dan die Asymptote bei der Funktion wenn  es gegen unendlich geht?

Ok mit der 2. Ableitung das verstehe ich, war ein Leichtsinnsfehler von mir. Habe wie bei der ersten Ableitung einfach die Vorzeichen gewechselt, hätte das doch nochmal extra ableiten sollen.

Aber wegen der Asymptote hätte ich gerne noch eine Antwort :)

LG Eva

Bezug
                        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 02:11 Di 19.02.2008
Autor: Teufel

Kein Problem :)

Ich würde sagen, dass es keine Unendlichkeitsasymptoten gibt. Auf alle Fälle geht nämlich auch der Anstieg der Funktion ins unendliche, deshalb kann man da zumindest keine Gerade als Asymptote finden.

Anders als z.B. bei [mm] f(x)=2x+2+\bruch{1}{x²+4}, [/mm] wo man leicht y=2x+2 als Unendlichkeitsasymptote ablesen kann. f'(x) geht hier für [mm] |x|->\infty [/mm] auch gegen 2, wie man es erwarten kann.

So und jetzt gute Nacht, ich hau mich hin ;) 4 Stunden will ich wenigstens noch schlafen (soll kein Vorwurf sein, war ja eh noch bis eben wach)!
Gute Nacht.

Bezug
                                
Bezug
Kurvendiskussion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:28 Di 19.02.2008
Autor: eva_sp

danke nochma :) werd mich jetzt auch hinlegen.. war genug mathe für heute ;)

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]