www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTrigonometrische FunktionenKurvendiskussion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Trigonometrische Funktionen" - Kurvendiskussion
Kurvendiskussion < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: trigonometrische Funktionen
Status: (Frage) beantwortet Status 
Datum: 09:36 Do 22.05.2008
Autor: noobo2

Hallo,
wie kann man denn eine Kurvendiskussion einer trogonometrischen Funktion wie z.B. f(x)= 3 sin(x)+ 4 cos(x) machen? gibt es irgendwie ne quelle wo mans nachgucken kann , weil cih finde nur Aufgaben, wie kann man dennd ie nullstellen ausrechnen?

        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 09:49 Do 22.05.2008
Autor: cagivamito

Hallo.
Also du wirst auf jeden Fall die Ableitungsregeln für deine Kurvendiskussion benötigen:
aus
f(x) = sin(x) --> f'(x) cos(x)
f(x) = cos(x) --> f'(x) -sin(x)
f(x) = -sin(x) --> f'(x) -cos(x)
f(x) = -cos(x) --> f'(x) sin(x)

Für die Nullstellen solltest du mal nach dem Einheitskreis suchen.
Diese gibt dir an, wann cos und wann sin "null" werden.
Den Einheitskreis findest du auch mit Animationen im Internet, einfach mal diesen Suchbegriff eingeben.

Gruß Jens

Bezug
                
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:23 Do 22.05.2008
Autor: noobo2

okay das wusste ich jetzt schon aber wie bestimtm man den beispielsweise extrempunkte? ich habnurmal gehört, dass man dazu die additionstheoreme benutzen muss oder?


Bezug
                        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:34 Do 22.05.2008
Autor: Tyskie84

Hi,

> okay das wusste ich jetzt schon aber wie bestimtm man den
> beispielsweise extrempunkte? ich habnurmal gehört, dass man
> dazu die additionstheoreme benutzen muss oder?
>  

Also im Prinzip funktioniert die Kurvendiskussion einer trigonometrischen Funktion genaus so wie eine Kurvendiskussion einer ganzrationalen Funktion aber mit einer Besonderheit. Diese Besonderheit nennt sich Periodizität.

Ich gebe dir ein Beispiel:

[guckstduhier] [a]Datei-Anhang und hier [a]Datei-Anhang

Und zum Schluss noch []hier

Also man braucht nicht immer die Additionstheoreme.

[hut] Gruß




Dateianhänge:
Anhang Nr. 1 (Typ: pdf) [nicht öffentlich]
Anhang Nr. 2 (Typ: pdf) [nicht öffentlich]
Bezug
                                
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:47 Do 22.05.2008
Autor: noobo2

hab mich ein bisschen damit beschäftigt komm aber nicht weiter und zwar bei der funktion
f(x)= 3*sin(x)+4*cos(x) wollte ich die Nullstellen berechnen, hab alsomit den additionstheoremen angefangen so wie es hier gezeigt wird
http://www.mathe-cd.de/4_Funktionen/47_Trigo/47011%20Trigofunk%202%20SODOL.pdf (S.5)
a* sin(x+c)= a* sin(x) * cos(c) + a* sin(c)* cos(x) also muss unter berücksichtigung von f(x)
a* cos (c) = 3
a * sin(c) =4
gelten.
dann bin ich wie in der pdf weiterverfahren und kam nach addition auf
[mm] a^2 [/mm] =7
wenn cih dann aber weiter einsetzte
[mm] \wurzel{7}* [/mm] cos (c) =3 bekomm ich für den arcos nen wert über 1 was hab ih denn falsch gemacht?

Bezug
                                        
Bezug
Kurvendiskussion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:43 Do 22.05.2008
Autor: noobo2

keiner ne idee? ist irgendwas unklar oder so??/ hab ich was falsch formuliert?

Bezug
                                        
Bezug
Kurvendiskussion: zu kompliziert
Status: (Antwort) fertig Status 
Datum: 14:20 Do 22.05.2008
Autor: Loddar

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo noobo!


dieser Weg erscheint mit viel zu kompliziert. Klammer euinfach aus (wie in meiner anderen Antwort schon angedeutet):

$$3*\sin(x)+4*\cos(x) \ = \ 4*\cos(x)*\left[\bruch{3}{4}*\bruch{\sin(x)}{\cos(x)}+1\right] \ = \  4*\cos(x)*\left[\bruch{3}{4}*\tan(x)}+1\right] \ = \ 0$$
$$\gdw \ \ \ \ 4*\cos(x) \ = \ 0 \ \ \ \ \ \text{oder} \ \ \ \ \bruch{3}{4}*\tan(x)}+1 \ = \ 0$$

Gruß
Loddar


Bezug
                                                
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:30 Do 22.05.2008
Autor: noobo2

okay das geht ja aber ich muss ja irgendwie falsch gerechnet haben oder?? Es muss ja auch auf diesem wege gehn...
und noch ne zweite frage und zwar weshlab kann man um die Nullstellen einer normalen Kosinusfunktion zu ermitteln also z.B.
[mm] f(x)=\wurzel{2}*cos(\bruch{2}{3}x) [/mm]
einfach rechnen:
[mm] \bruch{2}{3}x= \bruch{\pi}{2}+k*\pi [/mm]             | mir ist bewusst, dass das letzte die allegmeine Formel zur bestimmung von Nullstellen der normalen Kosinusfunktion ist

Bezug
                                                        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:06 Do 22.05.2008
Autor: leduart

Hallo
cos(irgendwas)=0 wenn irgendwas = [mm] \pi/2+k*\pi [/mm]
bei dir ist jetzt irgendwas 2/3x
wenn da stünde cos(2,2x+0,7)=0 dann wäre [mm] 2,2x+0,7=\pi/2+k*\pi [/mm]
kurz, der cos ist 0 wenn das was man cos nimmt eben [mm] \pi/2+k*\pi [/mm] ist.
Gruss leduart

Bezug
                                                                
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:09 Do 22.05.2008
Autor: noobo2

ja mir ist schon kalr das im prinzip, wenn man es ma im gradmaß darstellt
90+ k* 180 immer wieder die neue nullstelel gibt, nur weshalb erhalte ich denn wenn ich den b faktor einer in x-Richtugn gestauchten oder gestreckten cos kurve damit gleichsetzte die zugehörigen nullstellen der funktion??
mir erscheint das nur irgendwie unlogisch

Bezug
                                                                        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:19 Do 22.05.2008
Autor: leduart

Hallo
Genau das hab ich versucht zu sagen. wenn [mm] 2/3x=\pi/2 [/mm] ist dann steht doch im cis, wenn du [mm] 2/3\pi [/mm] reinschreibst [mm] cos(\pi/2) [/mm]
oder cos(r*x)=0  [mm] r*x=\pi/2 x=\pi/2r [/mm]   dieses x jetzt einsetzen in [mm] cos(rx)=cos(r*\pi/2r) [/mm]  r kürzen und du siehst das Ergebnis.
Noch anders, wenn du cos(2/3)x hast, ist die Funktion in x Richtung um 3/2 gedehnt, die Nullstell liegt also bei [mm] 3/2*\pi/2 [/mm] statt bei [mm] \pi/2 [/mm] deshalb [mm] 2/3x=\pi/2; x=3/2*\pi/2 [/mm]  wenn x die Nst. ist.
Gruss leduart

Bezug
                                                
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:01 Do 22.05.2008
Autor: noobo2

ich versteh nicht genau wie du darauf kommst dass

sin(x) = [mm] \bruch{3* sin(x)}{4* cos(x)}+1 [/mm] ist , dass ist nicht identisch

Bezug
                                                        
Bezug
Kurvendiskussion: nicht identisch
Status: (Antwort) fertig Status 
Datum: 20:04 Do 22.05.2008
Autor: Loddar

Hallo noobo!


> sin(x) = [mm]\bruch{3* sin(x)}{4* cos(x)}+1[/mm] ist , dass ist  nicht identisch

[ok] Völlig richtig! Aber das behaupte ich ja auch nicht. Du musst schon den Gesamtterm betrachten: da habe ich [mm] $4*\cos(x)$ [/mm] ausgeklammert.

Multipliziere den Klammerterm doch mal aus, dann erhältst Du wieder Deine Ausgangsform.


Gruß
Loddar


Bezug
                                                
Bezug
Kurvendiskussion: Hi, Loddar!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:41 Do 22.05.2008
Autor: Zwerglein

Hi, Loddar,

> dieser Weg erscheint mit viel zu kompliziert. Klammer
> einfach aus (wie in meiner anderen Antwort schon
> angedeutet):
>  
> [mm]3*\sin(x)+4*\cos(x) \ = \ 4*\cos(x)*\left[\bruch{3}{4}*\bruch{\sin(x)}{\cos(x)}+1\right] \ = \ 4*\cos(x)*\left[\bruch{3}{4}*\tan(x)}+1\right] \ = \ 0[/mm]
>  
> [mm]\gdw \ \ \ \ 4*\cos(x) \ = \ 0 \ \ \ \ \ \text{oder} \ \ \ \ \bruch{3}{4}*\tan(x)}+1 \ = \ 0[/mm]

Da ist Dir aber ein Bock untergekommen!
Wie man auf Anhieb sieht, sind die Nullstellen des Cosinus (x = [mm] (2k+1)*\bruch{\pi}{2}) [/mm] KEINE Nullstellen des Terms 3*sin(x)+4*cos(x)!

Da ist vielmehr eine Fallunterscheidung nötig:
1.Fall: cos(x) = 0 ... => keine Lösung.
2. Fall: cos(x) [mm] \not= [/mm] 0 => tan(x) = [mm] -\bruch{4}{3} [/mm] usw.

mfG!
Zwerglein

Bezug
                                                        
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:45 Do 22.05.2008
Autor: noobo2

könntest du das vielleicht ein bisschen genauer ausführen??

Bezug
                                                                
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:55 Do 22.05.2008
Autor: Zwerglein

Hi, noobo2,

freilich!

3*sin(x) + 4*cos(x) = 0

<=>  3*sin(x) = -4*cos(x)  (***)

1. Fall: cos(x) = 0; dann ist sin(x) [mm] \not= [/mm] 0. Also: keine Lösung.

2. Fall: cos(x) [mm] \not= [/mm] 0.
Dann darf man die Gleichung (***) durch cos(x) dividieren und erhält:

[mm] \bruch{sin(x)}{cos(x)} [/mm] = [mm] -\bruch{4}{3} [/mm]

Wie bekannt ist die linke Seite der Tangens, daher:

tan(x) =  [mm] -\bruch{4}{3} [/mm]

Naja - und das ist ja nun leicht zu lösen!

mfG!
Zwerglein

Bezug
                                                                        
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:07 Do 22.05.2008
Autor: noobo2

hey vielen dank ja stimmt das ist logisch, kannst du mri vielleicht auf bei meinem problem mit meinen auf die andere methode ermittelten 4 werten weiterhelfen??

Bezug
                                                
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:37 Do 22.05.2008
Autor: rabilein1

[mm] 3*\sin(x)+4*\cos(x) [/mm]  =  [mm] 4*\cos(x)*\left[\bruch{3}{4}*\bruch{\sin(x)}{\cos(x)}+1\right] [/mm]  

Wenn man den rechten Teil der Gleichung ausmultipliziert, dann kommt man logischer Weise (also quasi von ganz allein) auf den linken Teil.

Aber wie kommt man von dem linken Teil zum rechten? Gibt es da irgend ein spezielles Verfahren? Oder hast du das durch Probieren / Knobeln rausgefunden?

Bezug
                                                        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:42 Do 22.05.2008
Autor: Tyskie84

Hi,

> [mm]3*\sin(x)+4*\cos(x)[/mm]  =  
> [mm]4*\cos(x)*\left[\bruch{3}{4}*\bruch{\sin(x)}{\cos(x)}+1\right][/mm]
>  
>
> Wenn man den rechten Teil der Gleichung ausmultipliziert,
> dann kommt man logischer Weise (also quasi von ganz allein)
> auf den linken Teil.
>  
> Aber wie kommt man von dem linken Teil zum rechten? Gibt es
> da irgend ein spezielles Verfahren? Oder hast du das durch
> Probieren / Knobeln rausgefunden?

Du musst einfach [mm] \\4\cdot\\cos(x) [/mm] ausklammern.

[hut] Gruß


Bezug
                                                                
Bezug
Kurvendiskussion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:04 Fr 23.05.2008
Autor: rabilein1


> Du musst einfach [mm]\\4\cdot\\cos(x)[/mm] ausklammern.

Das war mir schon klar, wie das gemacht wurde.

Man könnte jedoch genau so gut auch [mm] 3*\sin(x) [/mm] ausklammern.
Um aber [mm]\\4\cdot\\cos(x)[/mm] auszuklammern, muss man doch schon vorher gewusst haben, dass das Ganze auf Tangens rausläuft und man die Gleichung dann lösen kann.

Also wurde hier doch irgendwie das Pferd von hinten aufgezäumt.

Bezug
                                                                        
Bezug
Kurvendiskussion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:09 Fr 23.05.2008
Autor: Tyskie84

Hi,

> > Du musst einfach [mm]\\4\cdot\\cos(x)[/mm] ausklammern.
>  
> Das war mir schon klar, wie das gemacht wurde.
>
> Man könnte jedoch genau so gut auch [mm]3*\sin(x)[/mm] ausklammern.

Ja aber was bringt das?

> Um aber [mm]\\4\cdot\\cos(x)[/mm] auszuklammern, muss man doch schon
> vorher gewusst haben, dass das Ganze auf Tangens rausläuft

Ja genau. Man weiss, dass [mm] \\tan(x)=\bruch{sin(x)}{cos(x)} [/mm] und formt dann so um dass es passt.

> und man die Gleichung dann lösen kann.
>  
> Also wurde hier doch irgendwie das Pferd von hinten
> aufgezäumt.  

[ok]

[hut] Gruß


Bezug
                        
Bezug
Kurvendiskussion: Ableitung
Status: (Antwort) fertig Status 
Datum: 11:42 Do 22.05.2008
Autor: Loddar

Hallo noobo!


Berechne doch mal die Ableitung $f'(x)_$ Deiner Funktion. Dann kannst Du z.B. [mm] $\cos(x)$ [/mm] ausklammern und die entsprechenden Nullstellen ermitteln (Stichwort: Nullprodukt).


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]